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Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order, find first-order predicates α
such that

|= φ[X ← α].

We call such α FEQ-witnesses.
• Similarity to solving equations

• Finding first-order X such that β(X ) ≡ γ(X ) is equivalent to
finding fist-order X such that |= β(X )↔ γ(X )

Example

∃X X (a) has witness λu.u ≃ a

• Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

• Undecidable (contains first-order validity problem), but
recursively enumerable
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Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order, find a first-order formula ψ
such that

∃X φ ≡ ψ.

Example

∃X (X (a) ∧ ∀u (X (u)→ B(u))) ≡ B(a)

• Applications in modal correspondence theory, forgetting in
ontologies and more

• Not recursively enumerable (not even arithmetical)

• Prominent algorithms are the saturation-based approach
SCAN1 and the Ackermann2-based approach DLS3

1GO92.
2Ack35.
3DLS97.
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Introduction
Bridging the gap: Witnessed Second-order quantifier elimination (WSOQE)

Given ∃X φ, where φ is first-order, find first-order predicates α s.t.

∃X φ ≡ φ[X ← α].

We call such α WSOQE-witnesses, or simply witnesses.

Example

∃X (X (a) ∧ ∀u (X (u)→ B(u))) ≡ B(a)
Some witnesses are λu.B(u) and λu.u ≃ a

• witnesses yield solutions to SOQE

• witnesses reduce corresponding FEQ-problem to first-order
validity checking

Contribution of this talk:

• If φ is a clause set and SCAN terminates on ∃X φ, we can
construct a (potentially infinite) WSOQE-witness.
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SCAN Algorithm

For this talk we assume that we operate on clause sets N and the
only second-order quantifier is ∃X
• Apply ∃X -equivalence-preserving inference and deletion steps
to N...
• i.e., if N/N ′ is a derivation step, then ∃X N ≡ ∃X N ′

• ...until the clause set does not contain X anymore. Then we
found a first-order formula equivalent to ∃X N

• We capture the sequence of derivation steps in a derivation D

• If SCAN terminates we use D to compute a witness in a
post-processing step
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SCAN Derivation Steps
Inference steps

Constraint resolution:

L(t) ∨ C L(s)⊥ ∨ C ′
Res

t ̸≃ s ∨ C ∨ C ′

where L is an X -literal (L⊥ denotes the dual literal).
Constraint factoring:

L(t) ∨ L(s) ∨ C
Fac

t ̸≃ s ∨ L(t) ∨ C

Constraint elimination:

t ̸≃ s ∨ C
ConstrElim

Cσ

where σ is a most general unifier of t and s.
• Separate constraint resolution and constraint elimination so
we can derive, e.g., a ̸≃ c from X (a) and ¬X (c).
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SCAN Derivation Steps
Extended purity deletion

Negative (positive) extended purity deletion:

N
ExtPurDel

−(+)
XN \ {C ∈ N |C contains X}

if for every clause C ∈ N that contains X , we have that X occurs
negatively (positively) in C .

Example

{B(a, v), B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c)}
ExtPurDel−X{B(a, v)}

Note that λu.⊥ is a witness for the premise N
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SCAN Derivation Steps
Redundancy elimination

• Tautology deletion

• Subsumption deletion

• Potentially other equivalence-preserving simplification steps
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SCAN Derivation Steps
Purified clause deletion

• Pointed clause P = L(t) ∨ C : Underlining designates a literal
in P with respect to which we perform resolution

• P is purified in a clause set N, if all resolvents between P and
N are redundant in N

• Purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and N is closed under constraint factoring
and constraint elimination
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SCAN Derivation Steps
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (resolve 2 with 3, subsumed by 1)

(6) a ̸≃ c (resolve 2 with 4)

k Dk Nk

0 1, 2, 3, 4

1 Res2,4 1, 2, 3, 4, 6

2 PurDel2 1, 3, 4, 6

3 ExtPurDel−X 1, 6
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Computing Witnesses
Approach

Let D = (Dk)1≤k≤m be an X -eliminating derivation from N.

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

α0

TD1←− α1

TD2←− . . .
TDm−1←− αm−1

TDm←− αm = λu.W (u)
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Computing Witnesses
Extending Witnesses across derivation steps

Lemma (Witness Preservation Lemma)

If S is a derivation step from N to N ′ and ∃X N ′ ≡ N ′[X ← α],
then ∃X N ≡ N[X ← TS(α)].

We define TS(α) by

TRes(α) = α

TFac(α) = α

TConstrElim(α) = α

TTautDel(α) = α

TSubsDel(α) = α

TExtPurDel+X
(α) = λu.⊤

TExtPurDel−X
(α) = λu.⊥

TPurDelP (α) = pResUP [X ← α]
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Computing Witnesses
P-resolution closure with a unit

• Recall purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and closed under constraint factoring and
constraint elimination.

• For P = L(t) ∨ C define the P-resolution closure with a unit

ResUP(c) to be the closure of
{
L(c)⊥

}
under (constraint)

resolution on P
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Computing Witnesses
P-resolution closure with a unit

Example

If P = X (a), then ResUP(c) = {¬X (c), a ̸≃ c}

Example

If P = B(u, v) ∨ ¬X (u) ∨ X (v), then

ResUP(c) = {X (c),

B(c , v) ∨ X (v),

B(c , v) ∨ B(v , v ′) ∨ X (v ′),

B(c , v) ∨ B(v , v ′) ∨ B(v ′, v ′′) ∨ X (v ′′),

. . . }
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Computing Witnesses
Extending Witnesses across purified clause deletion

Define pResUP by

pResUP =

{
λu.

∧
R(c,v)∈ResUP(c)

∀v R(u, v) if P = ¬X (t) ∨ C

λu.
∨

R(c,v)∈ResUP(c)
∃v ¬R(u, v) if P = X (t) ∨ C

• pResUP is potentially infinite!
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Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (resolve 2 with 3, subsumed by 1)

(6) a ̸≃ c (resolve 2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 λu.u ≃ a

1 Res2,4 1, 2, 3, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≃ a

2 PurDel2 1, 3, 4, 6 λu.⊥
3 ExtPurDel−X 1, 6 λu.W (u)
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Computing Witnesses
Implementation

• Prototype implementation in GAPT4

• Tested on 26 examples created by us or picked from the
literature

• Our implementation finds a witness for 21 of them

• For these the running times were between 0.03ms and
150.60ms with an average of 14.96ms.

4https://www.logic.at/gapt/
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Further results

• Witnesses are finite if no redundancy is employed

• Witnesses are finite for one-sided derivations

• Exponential upper bound on size of witness (with respect to
derivation length) for one-sided derivations

• Improvement over Ackermann’s Lemma on clause sets

• New correctness proof of SCAN
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Conclusion

We showed how to extend SCAN to solve the stronger WSOQE
problem for the case of clause sets.

The three problems SOQE, WSOQE and FEQ provide a common
logical framework for work done on all of these topics.
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Future Work

• Construct finite witnesses

• Equality reasoning

• Handling Skolemization of input formula

• Quantifier alternations

• Computing witnesses using DLS(*)
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