Computing Witnesses Using the SCAN Algorithm

Fabian Achammer!, Stefan Hetzl!, Renate Schmidt?

Lnstitute of Discrete Mathematics and Geometry
TU Wien
and
2Department of Computer Science
University of Manchester

CADE-30
DHBW Stuttgart
July 30th, 2025

Introduction
®00

Introduction
Formula Equations (FEQ)
Given 3X ¢, where ¢ is first-order, find first-order predicates &
such that

= oX —al.
We call such &@ FEQ-witnesses.
® Similarity to solving equations

® Finding first-order X such that 8(X) = v(X) is equivalent to
finding fist-order X such that = B(X) + v(X)

Example
X X(a) has witness Au.u ~ a
® Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

¢ Undecidable (contains first-order validity problem), but
recursively enumerable

2/22

Introduction

oeo

Introduction
Second-order quantifier elimination (SOQE)

Given 3X ¢, where ¢ is first-order, find a first-order formula
such that

IX p = .

Example
X (X(a) AVu(X(u) = B(u))) = B(a)
® Applications in modal correspondence theory, forgetting in
ontologies and more
® Not recursively enumerable (not even arithmetical)

® Prominent algorithms are the saturation-based approach
SCAN! and the Ackermann?-based approach DLS3

1G092.
2Ack35.
3pLSo7.

3/22

Introduction
ooe

Introduction
Bridging the gap: Witnessed Second-order quantifier elimination (WSOQE)

Given 3X ¢, where ¢ is first-order, find first-order predicates @ s.t.

IX o = ¢[X «+ al.

We call such @ WSOQE-witnesses, or simply witnesses.

Example

X (X(a) AVu (X(u) — B(u))) = B(a)

Some witnesses are Au.B(u) and Av.u~ a
® witnesses yield solutions to SOQE

® witnesses reduce corresponding FEQ-problem to first-order
validity checking

Contribution of this talk:

® If pis a clause set and SCAN terminates on 3X ¢, we can
construct a (potentially infinite) WSOQE-witness.

4/22

Outline

Introduction
SCAN Algorithm
Computing Witnesses

Discussion

5/22

SCAN Algorithm
O@00000

SCAN Algorithm

For this talk we assume that we operate on clause sets N and the
only second-order quantifier is 3X

e Apply 3X -equivalence-preserving inference and deletion steps
to N...

® ie, if N/N'is a derivation step, then IX N = 3IX N’

® _..until the clause set does not contain X anymore. Then we
found a first-order formula equivalent to IX N

® We capture the sequence of derivation steps in a derivation D

e |f SCAN terminates we use D to compute a witness in a
post-processing step

6/22

SCAN Algorithm
0O0@0000

SCAN Derivation Steps

Inference steps
Constraint resolution:

LEyvc LE)*vC
t2svCv
where L is an X-literal (L' denotes the dual literal).
Constraint factoring:

Res

Constraint elimination:
t#25VvC
Co
where o is a most general unifier of t and 5.

ConstrElim

® Separate constraint resolution and constraint elimination so
we can derive, e.g., a % ¢ from X(a) and —=X(c).

7/22

Introduction SCAN Algorithm

iting Witnesses Discussion References
0008000 000 000

SCAN Derivation Steps
Extended purity deletion

Negative (positive) extended purity deletion:

N
N\ {C € N|C contains X}

ExtPurDel; ()
if for every clause C € N that contains X, we have that X occurs
negatively (positively) in C.
Example
{B(a,v), B(u,v)V-X(u)V X(v), -X(c)}
{B(a,v)}

Note that Au.L is a witness for the premise N

ExtPurDely

8/22

Introduction SCAN Algorithm Computing Witnesses Discussion References
000 0000e00 0000000 000

SCAN Derivation Steps

Redundancy elimination

® Tautology deletion
® Subsumption deletion

® Potentially other equivalence-preserving simplification steps

9/22

SCAN Algorithm
0000080

SCAN Derivation Steps

Purified clause deletion

® Pointed clause P = L(t) V C: Underlining designates a literal
in P with respect to which we perform resolution

® P is purified in a clause set N, if all resolvents between P and
N are redundant in N

® Purified clause deletion:
NU{P}
N
if P is purified in N and N is closed under constraint factoring
and constraint elimination

PurDelp

10/22

SCAN Algorithm
000000

SCAN Derivation Steps

Example
(1) B(a,v)
(2) X(a)
(3) B(u,v) VvV =X(u) Vv X(v)
(4) ~X(c)
(5) B(a,v)V X(v) (resolve 2 with 3, subsumed by 1)
(6) atc (resolve 2 with 4)
k | Dy Ny
0 1,2,3,4
1 Re5274 1,2,3,4,6
2 | PurDel, 1,3,4,6
3 | ExtPurDely | 1,6

11/22

Introduction SCAN Algorithm Computing Witnesses Discussion References

(e]e]e}

0000000 ®000000 [e]e]e}

Computing Witnesses
Approach

Let D = (Dk)1<k<m be an X-eliminating derivation from N.

D D Dm—1 Dm
N:N0—1>N1 —2) L>Nm_1 —)Nm
To Tp Tp,,_4 Tp _ _
a1 = ... S ame1 <2 am = Au.W(D)

12/22

Introduction SCAN Algorithm Computing Witnesses Discussion
000 0000000 0Oe00000 000

Computing Witnesses
Extending Witnesses across derivation steps
Lemma (Witness Preservation Lemma)

If S is a derivation step from N to N' and AIX N' = N'[X + q],
then IX N = N[X « Ts(a)].

We define Ts(a) by

X
[0}
»

Q

#
5]
0O

Q

7_ConstrEIim «

Q

7_TautDeI

I
e o o o Q

Q

TsubsDel

Te

2
=l
_|

+
xtPurDely

2
> >
S
l_

~—

ExtPurDely

(0%

~ o~ o~ o~ o~~~ o~

TPurDeIp pReSUP[X — a]

References

13/22

Introduction SCAN Algorithm Computing Witnesses Discussion References
000 0000000 00®0000 000

Computing Witnesses

P-resolution closure with a unit

® Recall purified clause deletion:

NU{P}
N
if P is purified in N and closed under constraint factoring and
constraint elimination.

® For P = L(t) V C define the P-resolution closure with a unit

ResUp(<) to be the closure of {L(€)*} under (constraint)
resolution on P

PurDelp

14/22

Introduction SCAN Algorithm Computing Witnesses Discussion

(e]e]e}

0000000 000e000 [e]e]e}

Computing Witnesses

P-resolution closure with a unit

Example
If P = X(a), then ResUp(c) = {—X(c),a % c}

Example
If P=B(u,v)V—-X(u)V X(v), then

References

15/22

Introduction SCAN Algorithm Computing Witnesses Discussion References
000 0000000 0000e00 000

Computing Witnesses

Extending Witnesses across purified clause deletion

Define pResUp by

oResUp = {)\u. Ar(ev)cresup(e) YV R(@, V) if P==X(f)V C
AUV gew)eresup@) 3V R(W, V) if P=X(t) vV C

® pResUp is potentially infinite!

16/22

Computing Witnesses
0000000

Computing Witnesses

Example
(1) B(a,v)
(2) X(a)
(3) B(u,v) VvV =X(u) Vv X(v)
(4) ~X(c)
(5) B(a,v) VvV X(v) (resolve 2 with 3, subsumed by 1)
(6) aztc (resolve 2 with 4)
k Dk Nk (07
0 1,2,3,4 Au.u>~a
1 | Resp4 1,2,3,4,6 | pResUy[X «— Au. L] =Avw~a
2 | PurDel, 1,3,4,6 Au. L
3 | ExtPurDely | 1,6 Au. W (u)

17/22

Computing Witnesses
0000008

Computing Witnesses

Implementation

Prototype implementation in GAPT#

Tested on 26 examples created by us or picked from the
literature

Our implementation finds a witness for 21 of them

For these the running times were between 0.03ms and
150.60ms with an average of 14.96ms.

*https://www.logic.at/gapt/

18/22

https://www.logic.at/gapt/

Discussion
©00

Further results

Witnesses are finite if no redundancy is employed
Witnesses are finite for one-sided derivations

Exponential upper bound on size of witness (with respect to
derivation length) for one-sided derivations

Improvement over Ackermann’s Lemma on clause sets

New correctness proof of SCAN

19/22

Discussion
0e0

Conclusion

We showed how to extend SCAN to solve the stronger WSOQE
problem for the case of clause sets.

The three problems SOQE, WSOQE and FEQ provide a common
logical framework for work done on all of these topics.

20/22

Future Work

Construct finite witnesses

Equality reasoning

Handling Skolemization of input formula
Quantifier alternations

Computing witnesses using DLS(*)

Discussion
ooe

21/22

Introduction

(e]e]e}

[Ack35]

[DLS97]

[GO92]

SCAN Algorithm Computing Witnesses Discussion References
0000000 0000000 000

References |

Wilhelm Ackermann. ,,Untersuchungen uber das
Eliminationsproblem der mathematischen Logik". In:
Mathematische Annalen 110.1 (1935), pp. 390-413.
DOI: 10.1007/BF01448035.

Patrick Doherty, Witold Lukaszewicz, and

Andrzej Szalas. ,,Computing Circumscription Revisited:
A Reduction Algorithm®. In: Journal of Automated
Reasoning 18.3 (1997), pp. 297-336. DOI:
10.1023/A:1005722130532.

Dov Gabbay and Hans Jiirgen Ohlbach. , Quantifier
Elimination in Second Order Predicate Logic”. In: South
African Computer Journal 7 (1992), pp. 35-43.

22/22

https://doi.org/10.1007/BF01448035
https://doi.org/10.1023/A:1005722130532

	Introduction
	SCAN Algorithm
	Computing Witnesses
	Discussion
	References

