
Computing Witnesses Using the SCAN Algorithm

Fabian Achammer1, Stefan Hetzl1, Renate Schmidt2

1Institute of Discrete Mathematics and Geometry
TU Wien

and
2Department of Computer Science

University of Manchester

CADE-30
DHBW Stuttgart
July 30th, 2025



Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order, find first-order predicates α
such that

|= φ[X ← α].

We call such α FEQ-witnesses.
• Similarity to solving equations

• Finding first-order X such that β(X ) ≡ γ(X ) is equivalent to
finding fist-order X such that |= β(X )↔ γ(X )

Example

∃X X (a) has witness λu.u ≃ a

• Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

• Undecidable (contains first-order validity problem), but
recursively enumerable

2 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order, find a first-order formula ψ
such that

∃X φ ≡ ψ.

Example

∃X (X (a) ∧ ∀u (X (u)→ B(u))) ≡ B(a)

• Applications in modal correspondence theory, forgetting in
ontologies and more

• Not recursively enumerable (not even arithmetical)

• Prominent algorithms are the saturation-based approach
SCAN1 and the Ackermann2-based approach DLS3

1GO92.
2Ack35.
3DLS97.

3 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Bridging the gap: Witnessed Second-order quantifier elimination (WSOQE)

Given ∃X φ, where φ is first-order, find first-order predicates α s.t.

∃X φ ≡ φ[X ← α].

We call such α WSOQE-witnesses, or simply witnesses.

Example

∃X (X (a) ∧ ∀u (X (u)→ B(u))) ≡ B(a)
Some witnesses are λu.B(u) and λu.u ≃ a

• witnesses yield solutions to SOQE

• witnesses reduce corresponding FEQ-problem to first-order
validity checking

Contribution of this talk:

• If φ is a clause set and SCAN terminates on ∃X φ, we can
construct a (potentially infinite) WSOQE-witness.

4 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Outline

Introduction

SCAN Algorithm

Computing Witnesses

Discussion

5 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Algorithm

For this talk we assume that we operate on clause sets N and the
only second-order quantifier is ∃X
• Apply ∃X -equivalence-preserving inference and deletion steps
to N...
• i.e., if N/N ′ is a derivation step, then ∃X N ≡ ∃X N ′

• ...until the clause set does not contain X anymore. Then we
found a first-order formula equivalent to ∃X N

• We capture the sequence of derivation steps in a derivation D

• If SCAN terminates we use D to compute a witness in a
post-processing step

6 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Inference steps

Constraint resolution:

L(t) ∨ C L(s)⊥ ∨ C ′
Res

t ̸≃ s ∨ C ∨ C ′

where L is an X -literal (L⊥ denotes the dual literal).
Constraint factoring:

L(t) ∨ L(s) ∨ C
Fac

t ̸≃ s ∨ L(t) ∨ C

Constraint elimination:

t ̸≃ s ∨ C
ConstrElim

Cσ

where σ is a most general unifier of t and s.
• Separate constraint resolution and constraint elimination so
we can derive, e.g., a ̸≃ c from X (a) and ¬X (c).

7 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Extended purity deletion

Negative (positive) extended purity deletion:

N
ExtPurDel

−(+)
XN \ {C ∈ N |C contains X}

if for every clause C ∈ N that contains X , we have that X occurs
negatively (positively) in C .

Example

{B(a, v), B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c)}
ExtPurDel−X{B(a, v)}

Note that λu.⊥ is a witness for the premise N

8 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Redundancy elimination

• Tautology deletion

• Subsumption deletion

• Potentially other equivalence-preserving simplification steps

9 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Purified clause deletion

• Pointed clause P = L(t) ∨ C : Underlining designates a literal
in P with respect to which we perform resolution

• P is purified in a clause set N, if all resolvents between P and
N are redundant in N

• Purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and N is closed under constraint factoring
and constraint elimination

10 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (resolve 2 with 3, subsumed by 1)

(6) a ̸≃ c (resolve 2 with 4)

k Dk Nk

0 1, 2, 3, 4

1 Res2,4 1, 2, 3, 4, 6

2 PurDel2 1, 3, 4, 6

3 ExtPurDel−X 1, 6

11 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Approach

Let D = (Dk)1≤k≤m be an X -eliminating derivation from N.

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

α0

TD1←− α1

TD2←− . . .
TDm−1←− αm−1

TDm←− αm = λu.W (u)

12 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Extending Witnesses across derivation steps

Lemma (Witness Preservation Lemma)

If S is a derivation step from N to N ′ and ∃X N ′ ≡ N ′[X ← α],
then ∃X N ≡ N[X ← TS(α)].

We define TS(α) by

TRes(α) = α

TFac(α) = α

TConstrElim(α) = α

TTautDel(α) = α

TSubsDel(α) = α

TExtPurDel+X
(α) = λu.⊤

TExtPurDel−X
(α) = λu.⊥

TPurDelP (α) = pResUP [X ← α]

13 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
P-resolution closure with a unit

• Recall purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and closed under constraint factoring and
constraint elimination.

• For P = L(t) ∨ C define the P-resolution closure with a unit

ResUP(c) to be the closure of
{
L(c)⊥

}
under (constraint)

resolution on P

14 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
P-resolution closure with a unit

Example

If P = X (a), then ResUP(c) = {¬X (c), a ̸≃ c}

Example

If P = B(u, v) ∨ ¬X (u) ∨ X (v), then

ResUP(c) = {X (c),

B(c , v) ∨ X (v),

B(c , v) ∨ B(v , v ′) ∨ X (v ′),

B(c , v) ∨ B(v , v ′) ∨ B(v ′, v ′′) ∨ X (v ′′),

. . . }

15 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Extending Witnesses across purified clause deletion

Define pResUP by

pResUP =

{
λu.

∧
R(c,v)∈ResUP(c)

∀v R(u, v) if P = ¬X (t) ∨ C

λu.
∨

R(c,v)∈ResUP(c)
∃v ¬R(u, v) if P = X (t) ∨ C

• pResUP is potentially infinite!

16 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (resolve 2 with 3, subsumed by 1)

(6) a ̸≃ c (resolve 2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 λu.u ≃ a

1 Res2,4 1, 2, 3, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≃ a

2 PurDel2 1, 3, 4, 6 λu.⊥
3 ExtPurDel−X 1, 6 λu.W (u)

17 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Implementation

• Prototype implementation in GAPT4

• Tested on 26 examples created by us or picked from the
literature

• Our implementation finds a witness for 21 of them

• For these the running times were between 0.03ms and
150.60ms with an average of 14.96ms.

4https://www.logic.at/gapt/
18 / 22

https://www.logic.at/gapt/


Introduction SCAN Algorithm Computing Witnesses Discussion References

Further results

• Witnesses are finite if no redundancy is employed

• Witnesses are finite for one-sided derivations

• Exponential upper bound on size of witness (with respect to
derivation length) for one-sided derivations

• Improvement over Ackermann’s Lemma on clause sets

• New correctness proof of SCAN

19 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Conclusion

We showed how to extend SCAN to solve the stronger WSOQE
problem for the case of clause sets.

The three problems SOQE, WSOQE and FEQ provide a common
logical framework for work done on all of these topics.

20 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

Future Work

• Construct finite witnesses

• Equality reasoning

• Handling Skolemization of input formula

• Quantifier alternations

• Computing witnesses using DLS(*)

21 / 22



Introduction SCAN Algorithm Computing Witnesses Discussion References

References I

[Ack35] Wilhelm Ackermann.
”
Untersuchungen über das

Eliminationsproblem der mathematischen Logik“. In:
Mathematische Annalen 110.1 (1935), pp. 390–413.
doi: 10.1007/BF01448035.

[DLS97] Patrick Doherty, Witold Lukaszewicz, and
Andrzej Szalas.

”
Computing Circumscription Revisited:

A Reduction Algorithm“. In: Journal of Automated
Reasoning 18.3 (1997), pp. 297–336. doi:
10.1023/A:1005722130532.

[GO92] Dov Gabbay and Hans Jürgen Ohlbach.
”
Quantifier

Elimination in Second Order Predicate Logic“. In: South
African Computer Journal 7 (1992), pp. 35–43.

22 / 22

https://doi.org/10.1007/BF01448035
https://doi.org/10.1023/A:1005722130532

	Introduction
	SCAN Algorithm
	Computing Witnesses
	Discussion
	References

