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Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order, find first-order predicates α
such that |= φ[X ← α], if they exist. We call α FEQ-witnesses.

• Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

• Undecidable (contains first-order validity problem), but
recursively enumerable

• Not studied much in this general setting

2 / 33



Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order,
find a first-order formula ψ such that ∃X φ ≡ ψ, if it exists.
• Applications in modal correspondence theory, forgetting in
ontologies and more

• Not recursively enumerable (not even arithmetical1)

• Prominent algorithms are the saturation-based approach
SCAN2 and the Ackermann3-based approach DLS4

1VD01.
2GO92.
3Ack35.
4DLS97.
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Introduction
Bridging the gap: Witnessed Second-order quantifier elimination (WSOQE)

Given ∃X φ, where φ is first-order,
find first-order predicates α s.t. ∃X φ ≡ φ[X ← α], if they exist.
We call the α WSOQE-witnesses, or simply witnesses.

• witnesses yield solutions to SOQE

• witnesses reduce corresponding FEQ-problem to first-order
validity checking

Contribution of this talk:

• If φ is a clause set and SCAN terminates on ∃X φ, we can
construct a (potentially infinite) WSOQE-witness.
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Examples

• ∃X X (a)
• is valid (equivalent to ⊤)
• one witness is λu.⊤, another one is λu.u ≈ a

• ∃X (X (a) ∧ ∀u (X (u)→ B(u)))
• is equivalent to B(a)
• some WSOQE-witnesses are

• λu.u ≈ a
• λu.B(u)
• λu.u ≈ a ∨ B(u)
• λu.u ≈ a ∧ B(u)

• can be solved using Ackermann’s lemma
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Ackermann’s lemma

Lemma
Let φ, ψ be first-order formulas where X only occurs positively
in φ and X does not occur in ψ. Then

∃X (φ ∧ ∀u (X (u)→ ψ(u, v)))

≡ φ[X ← λu.ψ(u, v)]

Let φ, ψ be first-order formulas where X only occurs negatively
in φ and X does not occur in ψ. Then

∃X (φ ∧ ∀u (ψ(u, v)→ X (u)))

≡ φ[X ← λu.ψ(u, v)]

• This is a first method for solving WSOQE!
• However, there are examples it cannot solve, even though
witnesses exist
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Example where Ackermann’s lemma fails

Consider the formula

∃X ∀u ∀v


B(a, v)

∧ X (a)

∧ (B(u, v) ∨ ¬X (u) ∨ X (v))

∧ ¬X (c)


No version of Ackermann’s lemma is applicable, but we will show
how to construct a witness for this formula.
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SCAN Algorithm

For this talk we assume that we operate on clause sets N and the
only second-order quantifier is ∃X
• Apply ∃X -equivalence-preserving inference and deletion steps
to N...
• i.e., if N/N ′ is a derivation step, then ∃X N ≡ ∃X N ′

• ...until the clause set does not contain X anymore.
• This means we found a first-order formula equivalent to ∃X N

• We capture the sequence of derivation steps in a derivation D

• If SCAN terminates we use D to compute a witness in a
post-processing step
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SCAN Derivation Steps
Inference steps

Constraint resolution:

L(t) ∨ C L(s)⊥ ∨ C ′
Res

t ̸≈ s ∨ C ∨ C ′

where L is an X -literal (L⊥ denotes the dual literal).

• Example:

X (a) ¬X (u) ∨ B(u)
Res

a ̸≈ u ∨ B(u)

Constraint factoring:

L(t) ∨ L(s) ∨ C
Fac

t ̸≈ s ∨ L(t) ∨ C
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SCAN Derivation Steps
Constraint elimination

Constraint elimination:

t ̸≈ s ∨ C
ConstrElim

Cσ

where σ is a most general unifier of t and s.

• Standard resolution calculus combines resolution and
constraint elimination.

• But we want to derive, e.g., a ̸≈ c from X (a) and ¬X (c).

• We often tacitly perform constraint elimination after any
inference.
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SCAN Derivation Steps
Extended purity deletion

Positive extended purity deletion:

N ExtPurDel+X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
positively in C

• Example:

{X (a)}
ExtPurDel+X∅

• Note that λu.⊤ is a witness for premise:
• ∃X X (a)⇒ ∃X ∅ ⇒ ⊤ ⇒ X (a)[X ← λu.⊤]⇒ ∃X X (a)
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SCAN Derivation Steps
Extended purity deletion

Negative extended purity deletion:

N ExtPurDel−X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
negatively in C
• Example:

{B(a, v), B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c)}
ExtPurDel−X{B(a, v)}

• Note that λu.⊥ is a witness for the premise N:
• ∃X N ⇒ ∃X {B(a, v)} ⇒ N[X ← λu.⊥]⇒ ∃X N
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SCAN Derivation Steps
Redundancy elimination

• Tautology deletion:

N ∪ {C}
TautDel

N
if C is a tautology

• Subsumption deletion:

N ∪ {C}
SubsDel

N
if there is a clause C ′ ∈ N and a first-order substitution σ
such that C ′σ ⊆ C
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SCAN Derivation Steps
Purified clause deletion

• Pointed clause P = L(t) ∨ C : Underlining designates a literal
in P with respect to which we apply resolution

• P is purified in a clause set N, if all resolvents between P and
N are redundant in N

• Purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and N is closed under constraint factoring
and constraint elimination
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SCAN Derivations
Example

{X (a),¬X (u) ∨ B(u)}
Res,ConstrElim

{X (a),¬X (u) ∨ B(u),B(a)}
PurDelX (a){X (a),¬X (u) ∨ B(u),B(a)}
ExtPurDel−X{X (a),¬X (u) ∨ B(u),B(a)}

{X (a),¬X (u) ∨ B(u)}
Res,ConstrElim

{X (a),¬X (u) ∨ B(u),B(a)}
PurDel¬X (u)∨B(u){X (a),¬X (u) ∨ B(u),B(a)}
ExtPurDel+X{X (a),¬X (u) ∨ B(u),B(a)}

16 / 33



Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Algorithm
Derivations

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

• A finite sequence of derivation steps D = (Dk)1≤k≤m is a
derivation from N if all derivations steps Dk are applicable to
Nk−1

• D is X-eliminating if Nm does not contain X
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Computing Witnesses
Approach

• Compute witness iteratively from an X -eliminating derivation
D = (Dk)1≤k≤m

• For all Nk we want a witness αk

• i.e., ∃X Nk ≡ Nk [X ← αk ] for all 0 ≤ k ≤ m

• Last clause set Nm contains no X , thus any first-order
predicate is a witness

• Transform witness αk of Nk to a witness αk−1 of Nk−1

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

α0

TD1←− α1

TD2←− . . .
TDm−1←− αm−1

TDm←− αm = λu.W (u)

• α0 is a witness for N0 = N
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Computing Witnesses
Extending Witnesses across derivation steps

Lemma (Witness Preservation Lemma)

If S is a derivation step from N to N ′ and ∃X N ′ ≡ N ′[X ← α],
then ∃X N ≡ N[X ← TS(α)].

We define TS(α) via

TRes(α) = α

TFac(α) = α

TConstrElim(α) = α

TTautDel(α) = α

TSubsDel(α) = α

TExtPurDel+X
(α) = λu.⊤

TExtPurDel−X
(α) = λu.⊥

TPurDelP (α) = pResUP [X ← α]
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Computing Witnesses
Resolution closure of a purified clause

• Recall purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and closed under constraint factoring and
constraint elimination.
• For a purified clause P = L(t) ∨ C define ResUP(c) to be the

closure of
{
L(c)⊥

}
under (constraint) resolution on P, e.g.,

• if P = ¬X (a), then ResUP(c) = {X (c), a ̸≈ c}
• if P = B(u, v) ∨ ¬X (u) ∨ X (v), then ResUP(c) =

{X (c),

B(c , v) ∨ X (v),

B(c , v) ∨ B(v , v ′) ∨ X (v ′),

B(c , v) ∨ B(v , v ′) ∨ B(v ′, v ′′) ∨ X (v ′′),

. . . }
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Computing Witnesses
Extending Witnesses across purified clause deletion

Define pResUP via

pResUP =

{
λu.

∧
R(c,v)∈ResUP(c)

∀v R(u, v) if P = ¬X (t) ∨ C

λu.
∨

R(c,v)∈ResUP(c)
∃v ¬R(u, v) if P = X (t) ∨ C

• pResUP is potentially infinite!
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Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 λu.u ≈ a←− obtained witness
1 Res2,4 1, 2, 3, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≈ a

2 PurDel2 1, 3, 4, 6 λu.⊥
3 ExtPurDel−X 1, 6 λu.W (u)
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Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 pResU3.2[X ← α1] is infinite!

1 PurDel3.2 1, 2, 4 λu.u ≈ a

2 Res2,4 1, 2, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≈ a

3 PurDel2 1, 4, 6 λu.⊥
4 ExtPurDel−X 1, 6 λu.W (u)
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Witness Preservation Lemma for PurDelP

Lemma (Witness Preservation Lemma for PurDelP)

Consider a purified clause deletion step

N ∪ {P} := NP
PurDelP .N

where P is purified in N and N is closed under factoring and
constraint elimination. Then:

If ∃X N ≡ N[X ← α] then ∃X NP ≡ NP [X ← pResUP [X ← α]].
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If ∃X N ≡ N[X ← α] then ∃X NP ≡ NP [X ← pResUP [X ← α]︸ ︷︷ ︸
:=αP

].

Proof sketch.
• Suffices to show ∃X NP ⇒ NP [X ← αP ].

• Since N ⊆ NP we have ∃X NP ⇒ ∃X N.

• α is witness for N, therefore ∃X N ⇒ N[X ← α].

• Remains to show N[X ← α]⇒ NP [X ← αP ].

• This reduces to N[X ← α]⇒ N[X ← αP ] and
N[X ← α]⇒ P[X ← αP ].

Lemma
Let P be a pointed clause and let C be a clause. Then
|= ResP(C )→ C [X ← pResUP ] and |= P[X ← pResUP ].
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Further results

• Witnesses are finite if no redundancy is employed
• Witnesses are finite for one-sided derivations

• pointed clause P is one-sided if X occurs in P only positively
or only negatively

• derivation D is one-sided if all purified clause deletions are
performed on one-sided pointed clauses

• Exponential upper bound on size of witness (with respect to
derivation length) for one-sided derivations

• Improvement over Ackermann’s Lemma on clause sets

• New correctness proof of SCAN

• Prototype implementation in GAPT5

5https://logic.at/gapt/
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Limitations

• Currently open how to always ensure finite witnesses when
SCAN terminates in the presence of redundancy criteria
• There are formulas where SCAN terminates, but no witnesses
exist, e.g. ∃X ∃u ∃v (X (u) ∧ ¬X (v)) is equivalent to
∃u ∃v u ̸= v , but it can be shown that no witness exists
• Could skolemize, but then all witnesses contain Skolem

symbols which can be undesirable

• Quantifier alternations: Consider the dual WSOQE-problem:
given ∀X φ, where φ is first-order, find first-order predicates α
such that ∀X φ ≡ φ[X ← α].
• Note that α is a witness for the dual problem iff it is a witness

for ∃X ¬φ.
• Introduces a negation on the input formula.
• If input is a clause set, the negation would in general not be a

clause set anymore
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Conclusion

We showed how to extend SCAN to solve the more general
WSOQE problem for the case of clause sets.

The three problems SOQE, WSOQE and FEQ provide a common
logical framework for work done on all of these topics
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Future Work

• Construct finite witnesses

• Equality reasoning

• Handling Skolemization

• Quantifier alternations

• Computing witnesses using DLS(*)
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