
Computing Witnesses Using the SCAN Algorithm

Fabian Achammer1, Stefan Hetzl1, Renate Schmidt2

1Institute of Discrete Mathematics and Geometry
TU Wien

and
2Department of Computer Science

University of Manchester

Computational Logic Seminar
TU Wien

July 16, 2025

Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order, find first-order predicates α
such that |= φ[X ← α], if they exist. We call α FEQ-witnesses.

• Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

• Undecidable (contains first-order validity problem), but
recursively enumerable

• Not studied much in this general setting

2 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order,
find a first-order formula ψ such that ∃X φ ≡ ψ, if it exists.
• Applications in modal correspondence theory, forgetting in
ontologies and more

• Not recursively enumerable (not even arithmetical1)

• Prominent algorithms are the saturation-based approach
SCAN2 and the Ackermann3-based approach DLS4

1VD01.
2GO92.
3Ack35.
4DLS97.

3 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Introduction
Bridging the gap: Witnessed Second-order quantifier elimination (WSOQE)

Given ∃X φ, where φ is first-order,
find first-order predicates α s.t. ∃X φ ≡ φ[X ← α], if they exist.
We call the α WSOQE-witnesses, or simply witnesses.

• witnesses yield solutions to SOQE

• witnesses reduce corresponding FEQ-problem to first-order
validity checking

Contribution of this talk:

• If φ is a clause set and SCAN terminates on ∃X φ, we can
construct a (potentially infinite) WSOQE-witness.

4 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Examples

• ∃X X (a)
• is valid (equivalent to ⊤)
• one witness is λu.⊤, another one is λu.u ≈ a

• ∃X (X (a) ∧ ∀u (X (u)→ B(u)))
• is equivalent to B(a)
• some WSOQE-witnesses are

• λu.u ≈ a
• λu.B(u)
• λu.u ≈ a ∨ B(u)
• λu.u ≈ a ∧ B(u)

• can be solved using Ackermann’s lemma

5 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Ackermann’s lemma

Lemma
Let φ, ψ be first-order formulas where X only occurs positively
in φ and X does not occur in ψ. Then

∃X (φ ∧ ∀u (X (u)→ ψ(u, v)))

≡ φ[X ← λu.ψ(u, v)]

Let φ, ψ be first-order formulas where X only occurs negatively
in φ and X does not occur in ψ. Then

∃X (φ ∧ ∀u (ψ(u, v)→ X (u)))

≡ φ[X ← λu.ψ(u, v)]

• This is a first method for solving WSOQE!
• However, there are examples it cannot solve, even though
witnesses exist

6 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Example where Ackermann’s lemma fails

Consider the formula

∃X ∀u ∀v


B(a, v)

∧ X (a)

∧ (B(u, v) ∨ ¬X (u) ∨ X (v))

∧ ¬X (c)


No version of Ackermann’s lemma is applicable, but we will show
how to construct a witness for this formula.

7 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Outline

Introduction

SCAN Algorithm

Computing Witnesses

Discussion

8 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Algorithm

For this talk we assume that we operate on clause sets N and the
only second-order quantifier is ∃X
• Apply ∃X -equivalence-preserving inference and deletion steps
to N...
• i.e., if N/N ′ is a derivation step, then ∃X N ≡ ∃X N ′

• ...until the clause set does not contain X anymore.
• This means we found a first-order formula equivalent to ∃X N

• We capture the sequence of derivation steps in a derivation D

• If SCAN terminates we use D to compute a witness in a
post-processing step

9 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Inference steps

Constraint resolution:

L(t) ∨ C L(s)⊥ ∨ C ′
Res

t ̸≈ s ∨ C ∨ C ′

where L is an X -literal (L⊥ denotes the dual literal).

• Example:

X (a) ¬X (u) ∨ B(u)
Res

a ̸≈ u ∨ B(u)

Constraint factoring:

L(t) ∨ L(s) ∨ C
Fac

t ̸≈ s ∨ L(t) ∨ C

10 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Constraint elimination

Constraint elimination:

t ̸≈ s ∨ C
ConstrElim

Cσ

where σ is a most general unifier of t and s.

• Standard resolution calculus combines resolution and
constraint elimination.

• But we want to derive, e.g., a ̸≈ c from X (a) and ¬X (c).

• We often tacitly perform constraint elimination after any
inference.

11 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Extended purity deletion

Positive extended purity deletion:

N ExtPurDel+X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
positively in C

• Example:

{X (a)}
ExtPurDel+X∅

• Note that λu.⊤ is a witness for premise:
• ∃X X (a)⇒ ∃X ∅ ⇒ ⊤ ⇒ X (a)[X ← λu.⊤]⇒ ∃X X (a)

12 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Extended purity deletion

Negative extended purity deletion:

N ExtPurDel−X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
negatively in C
• Example:

{B(a, v), B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c)}
ExtPurDel−X{B(a, v)}

• Note that λu.⊥ is a witness for the premise N:
• ∃X N ⇒ ∃X {B(a, v)} ⇒ N[X ← λu.⊥]⇒ ∃X N

13 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Redundancy elimination

• Tautology deletion:

N ∪ {C}
TautDel

N
if C is a tautology

• Subsumption deletion:

N ∪ {C}
SubsDel

N
if there is a clause C ′ ∈ N and a first-order substitution σ
such that C ′σ ⊆ C

14 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivation Steps
Purified clause deletion

• Pointed clause P = L(t) ∨ C : Underlining designates a literal
in P with respect to which we apply resolution

• P is purified in a clause set N, if all resolvents between P and
N are redundant in N

• Purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and N is closed under constraint factoring
and constraint elimination

15 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Derivations
Example

{X (a),¬X (u) ∨ B(u)}
Res,ConstrElim

{X (a),¬X (u) ∨ B(u),B(a)}
PurDelX (a){X (a),¬X (u) ∨ B(u),B(a)}
ExtPurDel−X{X (a),¬X (u) ∨ B(u),B(a)}

{X (a),¬X (u) ∨ B(u)}
Res,ConstrElim

{X (a),¬X (u) ∨ B(u),B(a)}
PurDel¬X (u)∨B(u){X (a),¬X (u) ∨ B(u),B(a)}
ExtPurDel+X{X (a),¬X (u) ∨ B(u),B(a)}

16 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

SCAN Algorithm
Derivations

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

• A finite sequence of derivation steps D = (Dk)1≤k≤m is a
derivation from N if all derivations steps Dk are applicable to
Nk−1

• D is X-eliminating if Nm does not contain X

17 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Outline

Introduction

SCAN Algorithm

Computing Witnesses

Discussion

18 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Approach

• Compute witness iteratively from an X -eliminating derivation
D = (Dk)1≤k≤m

• For all Nk we want a witness αk

• i.e., ∃X Nk ≡ Nk [X ← αk] for all 0 ≤ k ≤ m

• Last clause set Nm contains no X , thus any first-order
predicate is a witness

• Transform witness αk of Nk to a witness αk−1 of Nk−1

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

α0

TD1←− α1

TD2←− . . .
TDm−1←− αm−1

TDm←− αm = λu.W (u)

• α0 is a witness for N0 = N
19 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Extending Witnesses across derivation steps

Lemma (Witness Preservation Lemma)

If S is a derivation step from N to N ′ and ∃X N ′ ≡ N ′[X ← α],
then ∃X N ≡ N[X ← TS(α)].

We define TS(α) via

TRes(α) = α

TFac(α) = α

TConstrElim(α) = α

TTautDel(α) = α

TSubsDel(α) = α

TExtPurDel+X
(α) = λu.⊤

TExtPurDel−X
(α) = λu.⊥

TPurDelP (α) = pResUP [X ← α]

20 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Resolution closure of a purified clause

• Recall purified clause deletion:

N ∪ {P}
PurDelPN

if P is purified in N and closed under constraint factoring and
constraint elimination.
• For a purified clause P = L(t) ∨ C define ResUP(c) to be the

closure of
{
L(c)⊥

}
under (constraint) resolution on P, e.g.,

• if P = ¬X (a), then ResUP(c) = {X (c), a ̸≈ c}
• if P = B(u, v) ∨ ¬X (u) ∨ X (v), then ResUP(c) =

{X (c),

B(c , v) ∨ X (v),

B(c , v) ∨ B(v , v ′) ∨ X (v ′),

B(c , v) ∨ B(v , v ′) ∨ B(v ′, v ′′) ∨ X (v ′′),

. . . }

21 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Extending Witnesses across purified clause deletion

Define pResUP via

pResUP =

{
λu.

∧
R(c,v)∈ResUP(c)

∀v R(u, v) if P = ¬X (t) ∨ C

λu.
∨

R(c,v)∈ResUP(c)
∃v ¬R(u, v) if P = X (t) ∨ C

• pResUP is potentially infinite!

22 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 λu.u ≈ a←− obtained witness
1 Res2,4 1, 2, 3, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≈ a

2 PurDel2 1, 3, 4, 6 λu.⊥
3 ExtPurDel−X 1, 6 λu.W (u)

23 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Computing Witnesses
Example

(1) B(a, v)

(2) X (a)

(3) B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk αk

0 1, 2, 3, 4 pResU3.2[X ← α1] is infinite!

1 PurDel3.2 1, 2, 4 λu.u ≈ a

2 Res2,4 1, 2, 4, 6 pResU2[X ← λu.⊥] ≡ λu.u ≈ a

3 PurDel2 1, 4, 6 λu.⊥
4 ExtPurDel−X 1, 6 λu.W (u)

24 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Witness Preservation Lemma for PurDelP

Lemma (Witness Preservation Lemma for PurDelP)

Consider a purified clause deletion step

N ∪ {P} := NP
PurDelP .N

where P is purified in N and N is closed under factoring and
constraint elimination. Then:

If ∃X N ≡ N[X ← α] then ∃X NP ≡ NP [X ← pResUP [X ← α]].

25 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

If ∃X N ≡ N[X ← α] then ∃X NP ≡ NP [X ← pResUP [X ← α]︸ ︷︷ ︸
:=αP

].

Proof sketch.
• Suffices to show ∃X NP ⇒ NP [X ← αP].

• Since N ⊆ NP we have ∃X NP ⇒ ∃X N.

• α is witness for N, therefore ∃X N ⇒ N[X ← α].

• Remains to show N[X ← α]⇒ NP [X ← αP].

• This reduces to N[X ← α]⇒ N[X ← αP] and
N[X ← α]⇒ P[X ← αP].

Lemma
Let P be a pointed clause and let C be a clause. Then
|= ResP(C)→ C [X ← pResUP] and |= P[X ← pResUP].

26 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Outline

Introduction

SCAN Algorithm

Computing Witnesses

Discussion

27 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Further results

• Witnesses are finite if no redundancy is employed
• Witnesses are finite for one-sided derivations

• pointed clause P is one-sided if X occurs in P only positively
or only negatively

• derivation D is one-sided if all purified clause deletions are
performed on one-sided pointed clauses

• Exponential upper bound on size of witness (with respect to
derivation length) for one-sided derivations

• Improvement over Ackermann’s Lemma on clause sets

• New correctness proof of SCAN

• Prototype implementation in GAPT5

5https://logic.at/gapt/
28 / 33

https://logic.at/gapt/

Introduction SCAN Algorithm Computing Witnesses Discussion References

Limitations

• Currently open how to always ensure finite witnesses when
SCAN terminates in the presence of redundancy criteria
• There are formulas where SCAN terminates, but no witnesses
exist, e.g. ∃X ∃u ∃v (X (u) ∧ ¬X (v)) is equivalent to
∃u ∃v u ̸= v , but it can be shown that no witness exists
• Could skolemize, but then all witnesses contain Skolem

symbols which can be undesirable

• Quantifier alternations: Consider the dual WSOQE-problem:
given ∀X φ, where φ is first-order, find first-order predicates α
such that ∀X φ ≡ φ[X ← α].
• Note that α is a witness for the dual problem iff it is a witness

for ∃X ¬φ.
• Introduces a negation on the input formula.
• If input is a clause set, the negation would in general not be a

clause set anymore

29 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Conclusion

We showed how to extend SCAN to solve the more general
WSOQE problem for the case of clause sets.

The three problems SOQE, WSOQE and FEQ provide a common
logical framework for work done on all of these topics

30 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

Future Work

• Construct finite witnesses

• Equality reasoning

• Handling Skolemization

• Quantifier alternations

• Computing witnesses using DLS(*)

31 / 33

Introduction SCAN Algorithm Computing Witnesses Discussion References

References I

[Ack35] Wilhelm Ackermann.
”
Untersuchungen über das

Eliminationsproblem der mathematischen Logik“. In:
Mathematische Annalen 110.1 (1935), pp. 390–413.
doi: 10.1007/BF01448035.

[DLS97] Patrick Doherty, Witold Lukaszewicz, and
Andrzej Szalas.

”
Computing Circumscription Revisited:

A Reduction Algorithm“. In: Journal of Automated
Reasoning 18.3 (1997), pp. 297–336. doi:
10.1023/A:1005722130532.

[GO92] Dov Gabbay and Hans Jürgen Ohlbach.
”
Quantifier

Elimination in Second Order Predicate Logic“. In: South
African Computer Journal 7 (1992), pp. 35–43.

32 / 33

https://doi.org/10.1007/BF01448035
https://doi.org/10.1023/A:1005722130532

Introduction SCAN Algorithm Computing Witnesses Discussion References

References II

[VD01] Johan Van Benthem and Kees Doets.
”
Higher-Order

Logic“. In: Handbook of Philosophical Logic. Ed. by
D. M. Gabbay and F. Guenthner. Dordrecht: Springer
Netherlands, 2001, pp. 189–243. isbn:
978-94-015-9833-0. doi:
10.1007/978-94-015-9833-0_3. url:
https://doi.org/10.1007/978-94-015-9833-0_3.

33 / 33

https://doi.org/10.1007/978-94-015-9833-0_3
https://doi.org/10.1007/978-94-015-9833-0_3

	Introduction
	SCAN Algorithm
	Computing Witnesses
	Discussion
	References

