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Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order,
find first-order predicates χ such that |= φ[X ← χ], if they exist.
We call the χ FEQ-witnesses

▶ Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

▶ Undecidable in general (contains first-order validity problem)

▶ Not studied much in this general setting
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Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order,
find a first-order formula ψ such that |= ∃X φ↔ ψ, if it exists.

▶ Applications in modal correspondence theory, forgetting in
ontologies and more

▶ Undecidable in general

▶ Prominent algorithms are the saturation-based approach
SCAN1 and the Ackermann2-based approach DLS3

1GO92.
2Ack35.
3DLS97.
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Introduction
Bridging the gap between FEQ and SOQE: WSOQE

Given ∃X φ, where φ is first-order,
find first-order predicates χ such that |= ∃X φ↔ φ[X ← χ], if
they exist.
We call the χ WSOQE-witnesses, or simply witnesses.

▶ If we can solve WSOQE, we reduce FEQ to first-order validity
checking

Contribution of this talk:

▶ If φ is given as a clause set and SCAN terminates on ∃X φ,
we can construct corresponding WSOQE-witnesses, but they
are potentially infinite.
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Examples

Use lambda notation to denote first-order predicates that can be
substituted for second-order variables X .
For this talk we assume that we operate on clause sets N and the
only existential quantifier is over X
▶ ∃X X (a)

▶ is valid (equivalent to ⊤)
▶ one witness is λu.⊤, another one is λu.u ≈ a

▶ ∃X (X (a) ∧ ∀u (X (u)→ B(u)))
▶ is equivalent to B(a)
▶ some WSOQE-witnesses are

▶ λu.u ≈ a
▶ λu.B(u)
▶ λu.u ≈ a ∨ B(u)
▶ λu.u ≈ a ∧ B(u)

▶ can be solved using Ackermann’s lemma
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Ackermann’s lemma

Lemma
Let φ, ψ be first-order formulas where X only occurs positively
in φ and X does not occur in ψ. Then

|= ∃X (φ ∧ ∀u (X (u)→ ψ(u, v)))

↔ φ[X ← λu.ψ(u, v)]

Let φ, ψ be first-order formulas where X only occurs negatively
in φ and X does not occur in ψ. Then

|= ∃X (φ ∧ ∀u (ψ(u, v)→ X (u)))

↔ φ[X ← λu.ψ(u, v)]

▶ This is a first method for solving WSOQE!

▶ However, there are examples it cannot solve, even though
witnesses exist
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Example where Ackermann’s lemma fails

Consider the formula

∃X ∀u ∀v


¬B(a, v)
∧ X (a)

∧ (¬B(u, v) ∨ ¬X (u) ∨ X (v))

∧ ¬X (c)


No version of Ackermann’s lemma is applicable, but we show how
to construct a witness for this formula.
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SCAN Algorithm

▶ Approach of SCAN is to saturate input clause set N according
to ∃X -equivalence-preserving derivation steps

▶ We capture the sequence of derivation steps in a derivation D

▶ If SCAN terminates we use D to compute a witness in a
post-processing step
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SCAN Algorithm
Extended purity deletion

Positive extended purity deletion:

N ExtPur+X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
positively in C

▶ Example:

{X (a)}
ExtPur+X∅

▶ Note that λu.⊤ is a witness for premise
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SCAN Algorithm
Extended purity deletion

Negative extended purity deletion:

N ExtPur−X{C ∈ N |X does not occur in C}

if for every clause C ∈ N which contains X , we have that X occurs
negatively in C
▶ Example:

{¬B(a, v), ¬B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c), a ̸≈ c}
ExtPur−X{¬B(a, v), a ̸≈ c}

▶ Note that λu.⊥ is a witness for the premise and substitution
gives clause set equivalent to conclusion
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SCAN Algorithm
Inference steps

Constraint resolution:

C ∨ X (t) C ′ ∨ ¬X (s)
Res

C ∨ C ′ ∨ t ̸≈ s

▶ Example:

X (a) ¬X (u) ∨ B(u)
Res

B(u) ∨ a ̸≈ u

▶ Side note: We often tacitly perform necessary renaming of
variables so both clauses have disjoint variables

Constraint factoring:

C ∨ X (t) ∨ X (s)
Fac

C ∨ X (t) ∨ t ̸≈ s

Possible to add negative factoring as well
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SCAN Algorithm
Purified clause deletion

▶ Clause K = X (t) ∨ C (or K = ¬X (t) ∨ C )
is purified with respect to the literal (¬)X (t) in a clause set N,
if all possible derivation steps between this literal and N are
redundant in N

▶ Use underlining to denote the literal with respect to which the
clause is purified, e.g. X (t) ∨ C (or ¬X (t) ∨ C )

▶ Purified clause deletion:

N ∪ {K}
PurKN

if K = (¬)X (t) ∨ C is purified with respect to (¬)X (t) in N
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SCAN Algorithm
Example

{X (a),¬X (u) ∨ B(u)}
Res{X (a),¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
PurX (a){¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
ExtPur−X{a ̸≈ u ∨ B(u)}

{X (a),¬X (u) ∨ B(u)}
Res{X (a),¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
Pur¬X (u)∨B(u){X (a), a ̸≈ u ∨ B(u)}
ExtPur+X{a ̸≈ u ∨ B(u)}

15 / 28



SCAN Algorithm
Redundancy elimination

▶ Tautology deletion:

N ∪ {C}
TautDel

N
if C is a tautology

▶ Subsumption deletion:

N ∪ {C}
SubsDel

N
if there is a clause C ′ ∈ N and a first-order substitution σ
such that C ′σ ⊆ C

▶ Constraint elimination:
N ∪ {t ̸≈ s ∨ C}

ConstrElim
N ∪ {Cσ}

where σ is a most general unifier of t and s.
▶ Side note: We often tacitly perform constraint elimination

after any inference step

▶ Possibly other ∀X -equivalence-preserving simplifications
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SCAN Algorithm
Derivations

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

▶ A sequence of derivation steps D = (Dk)1≤k≤m is a derivation
from N if all Dk are applicable to Nk−1

▶ D is saturated if it cannot be extended to a longer sequence
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Computing Witnesses
Approach

▶ Compute witness iteratively from a saturated derivation
D = (Dk)1≤k≤m

▶ For all Nk we want a witness χk , i.e. it holds
|= (∃X Nk)↔ Nk [X ← χk ] for all 0 ≤ k ≤ m

▶ Last clause set Nm contains no X (D is saturated!), thus any
first-order predicate is a witness (we choose λu.⊥)

▶ Then extend witness χk of Nk to a witness χk−1 of Nk−1

across the derivation step Dk for all 1 ≤ k ≤ m using an
operation that takes Dk as input

▶ χ0 is a witness for N0 = N

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

χ0
ext←− χ1

ext←− . . .
ext←− χm−1

ext←− χm = λu.⊥
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Computing Witnesses
Extending Witnesses across derivation steps

We define a first-order predicate ext(Dk , χ) via

ext(Res, χ) = χ

ext(Fac, χ) = χ

ext(TautDel, χ) = χ

ext(SubsDel, χ) = χ

ext(ConstrElim, χ) = χ

ext(ExtPur+X , χ) = λu.⊤
ext(ExtPur−X , χ) = λu.⊥

ext(PurK, χ) = resK [X ← χ]
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Computing Witnesses
Resolution closure of a purified clause

▶ Recall purified clause deletion:

N ∪ {K}
PurKN

if K = (¬)X (t) ∨ C is purified with respect to (¬)X (t) in N
▶ For a purified clause K = ¬X (t) ∨ C define Res∗K to be the

closure of {X (u)} using constraint resolution on K , e.g.
▶ if K = ¬X (a), then Res∗K = {X (u), a ̸≈ u}
▶ if K = ¬B(u, v) ∨ ¬X (u) ∨ X (v), then Res∗K =

{X (u),

¬B(u, v) ∨ X (v),

¬B(u, v) ∨ ¬B(v , v ′) ∨ X (v ′),

¬B(u, v) ∨ ¬B(v , v ′) ∨ ¬B(v ′, v ′′) ∨ X (v ′′),

. . . }

▶ Analogous definition, if K = X (t) ∨ C , but perform closure of
{¬X (u)} under constraint resolution with K
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Computing Witnesses
Extending Witnesses across purified clause deletion

Define resK via

resK =

{
λu.

∧
R(u,v)∈Res∗K

∀v R(u, v) if K = ¬X (t) ∨ C

λu.
∨

R(u,v)∈Res∗K
∃v ¬R(u, v) if K = X (t) ∨ C

▶ resK is potentially infinite!
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Computing Witnesses
Example

(1) ¬B(a, v)
(2) X (a)

(3) ¬B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) ¬B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk χk

0 1, 2, 3, 4 λu.u ≈ a←− obtained witness
1 Res2,4 1, 2, 3, 4, 6 res2[X ← λu.⊥] = λu.u ≈ a

2 Pur2 1, 3, 4, 6 λu.⊥
3 ExtPur−X 1, 6 λu.⊥
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Computing Witnesses
Example

(1) ¬B(a, v)
(2) X (a)

(3) ¬B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) ¬B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk χk

0 1, 2, 3, 4 res3.2[X ← χ1] is infinite!

1 Pur3.2 1, 2, 4 λu.u ≈ a

2 Res2,4 1, 2, 4, 6 res2[X ← λu.⊥] = λu.u ≈ a

3 Pur2 1, 4, 6 λu.⊥
4 ExtPur−X 1, 6 λu.⊥
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Discussion

▶ Currently still open whether the termination of SCAN on
clause sets ensures a finite witness in the presence of
redundancy:
▶ True, if we omit redundancy criteria
▶ Also true, if the derivation has the property that purified clause

deletion only occurs on clauses where X occurs with a single
polarity

▶ We conjecture that we can construct such a derivation from
any given saturated derivation

▶ There are formulas where SCAN terminates, but no witnesses
exist, e.g. ∃X ∃u ∃v (X (u) ∧ ¬X (v)) is equivalent to
∃u ∃v u ̸= v , but it can be shown that no witness exists
▶ Could skolemize, but then all witnesses contain Skolem

symbols which can be undesirable
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Conclusion

We showed how to extend SCAN to solve the more general
WSOQE problem for the case of clause sets.

What we’re currently looking at:

▶ If SCAN terminates, is there always a finite witness?

▶ Investigate classes where SCAN terminates, including the
modal logic Sahlqvist class

▶ Finding and characterizing extended classes with SCAN-based
finite witnesses

▶ How can Skolemization be handled in witness generation?
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