
Computing Witnesses Using the SCAN Algorithm

Fabian Achammer, Stefan Hetzl, Renate Schmidt

Institute of Discrete Mathematics and Geometry
TU Wien

and
Department of Computer Science

University of Manchester

Formal Methods Seminar
University of Manchester

November 20, 2024

1 / 28



Introduction
Formula Equations (FEQ)

Given ∃X φ, where φ is first-order,
find first-order predicates χ such that |= φ[X ← χ], if they exist.
We call the χ FEQ-witnesses

▶ Generalizes problems of software verification, inductive
theorem proving, Boolean unification and others

▶ Undecidable in general (contains first-order validity problem)

▶ Not studied much in this general setting

2 / 28



Introduction
Second-order quantifier elimination (SOQE)

Given ∃X φ, where φ is first-order,
find a first-order formula ψ such that |= ∃X φ↔ ψ, if it exists.

▶ Applications in modal correspondence theory, forgetting in
ontologies and more

▶ Undecidable in general

▶ Prominent algorithms are the saturation-based approach
SCAN1 and the Ackermann2-based approach DLS3

1GO92.
2Ack35.
3DLS97.

3 / 28



Introduction
Bridging the gap between FEQ and SOQE: WSOQE

Given ∃X φ, where φ is first-order,
find first-order predicates χ such that |= ∃X φ↔ φ[X ← χ], if
they exist.
We call the χ WSOQE-witnesses, or simply witnesses.

▶ If we can solve WSOQE, we reduce FEQ to first-order validity
checking

Contribution of this talk:

▶ If φ is given as a clause set and SCAN terminates on ∃X φ,
we can construct corresponding WSOQE-witnesses, but they
are potentially infinite.

4 / 28



Outline

Examples

SCAN Algorithm

Computing Witnesses

Dicussion & Conclusion

5 / 28



Examples

Use lambda notation to denote first-order predicates that can be
substituted for second-order variables X .
For this talk we assume that we operate on clause sets N and the
only existential quantifier is over X
▶ ∃X X (a)

▶ is valid (equivalent to ⊤)
▶ one witness is λu.⊤, another one is λu.u ≈ a

▶ ∃X (X (a) ∧ ∀u (X (u)→ B(u)))
▶ is equivalent to B(a)
▶ some WSOQE-witnesses are

▶ λu.u ≈ a
▶ λu.B(u)
▶ λu.u ≈ a ∨ B(u)
▶ λu.u ≈ a ∧ B(u)

▶ can be solved using Ackermann’s lemma

6 / 28



Ackermann’s lemma

Lemma
Let φ, ψ be first-order formulas where X only occurs positively
in φ and X does not occur in ψ. Then

|= ∃X (φ ∧ ∀u (X (u)→ ψ(u, v)))

↔ φ[X ← λu.ψ(u, v)]

Let φ, ψ be first-order formulas where X only occurs negatively
in φ and X does not occur in ψ. Then

|= ∃X (φ ∧ ∀u (ψ(u, v)→ X (u)))

↔ φ[X ← λu.ψ(u, v)]

▶ This is a first method for solving WSOQE!

▶ However, there are examples it cannot solve, even though
witnesses exist

7 / 28



Example where Ackermann’s lemma fails

Consider the formula

∃X ∀u ∀v


¬B(a, v)
∧ X (a)

∧ (¬B(u, v) ∨ ¬X (u) ∨ X (v))

∧ ¬X (c)


No version of Ackermann’s lemma is applicable, but we show how
to construct a witness for this formula.

8 / 28



Outline

Examples

SCAN Algorithm

Computing Witnesses

Dicussion & Conclusion

9 / 28



SCAN Algorithm

▶ Approach of SCAN is to saturate input clause set N according
to ∃X -equivalence-preserving derivation steps

▶ We capture the sequence of derivation steps in a derivation D

▶ If SCAN terminates we use D to compute a witness in a
post-processing step

10 / 28



SCAN Algorithm
Extended purity deletion

Positive extended purity deletion:

N ExtPur+X{C ∈ N |X does not occur in C}

if for every clause C ∈ N that contains X , we have that X occurs
positively in C

▶ Example:

{X (a)}
ExtPur+X∅

▶ Note that λu.⊤ is a witness for premise

11 / 28



SCAN Algorithm
Extended purity deletion

Negative extended purity deletion:

N ExtPur−X{C ∈ N |X does not occur in C}

if for every clause C ∈ N which contains X , we have that X occurs
negatively in C
▶ Example:

{¬B(a, v), ¬B(u, v) ∨ ¬X (u) ∨ X (v), ¬X (c), a ̸≈ c}
ExtPur−X{¬B(a, v), a ̸≈ c}

▶ Note that λu.⊥ is a witness for the premise and substitution
gives clause set equivalent to conclusion

12 / 28



SCAN Algorithm
Inference steps

Constraint resolution:

C ∨ X (t) C ′ ∨ ¬X (s)
Res

C ∨ C ′ ∨ t ̸≈ s

▶ Example:

X (a) ¬X (u) ∨ B(u)
Res

B(u) ∨ a ̸≈ u

▶ Side note: We often tacitly perform necessary renaming of
variables so both clauses have disjoint variables

Constraint factoring:

C ∨ X (t) ∨ X (s)
Fac

C ∨ X (t) ∨ t ̸≈ s

Possible to add negative factoring as well

13 / 28



SCAN Algorithm
Purified clause deletion

▶ Clause K = X (t) ∨ C (or K = ¬X (t) ∨ C )
is purified with respect to the literal (¬)X (t) in a clause set N,
if all possible derivation steps between this literal and N are
redundant in N

▶ Use underlining to denote the literal with respect to which the
clause is purified, e.g. X (t) ∨ C (or ¬X (t) ∨ C )

▶ Purified clause deletion:

N ∪ {K}
PurKN

if K = (¬)X (t) ∨ C is purified with respect to (¬)X (t) in N

14 / 28



SCAN Algorithm
Example

{X (a),¬X (u) ∨ B(u)}
Res{X (a),¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
PurX (a){¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
ExtPur−X{a ̸≈ u ∨ B(u)}

{X (a),¬X (u) ∨ B(u)}
Res{X (a),¬X (u) ∨ B(u), a ̸≈ u ∨ B(u)}
Pur¬X (u)∨B(u){X (a), a ̸≈ u ∨ B(u)}
ExtPur+X{a ̸≈ u ∨ B(u)}

15 / 28



SCAN Algorithm
Redundancy elimination

▶ Tautology deletion:

N ∪ {C}
TautDel

N
if C is a tautology

▶ Subsumption deletion:

N ∪ {C}
SubsDel

N
if there is a clause C ′ ∈ N and a first-order substitution σ
such that C ′σ ⊆ C

▶ Constraint elimination:
N ∪ {t ̸≈ s ∨ C}

ConstrElim
N ∪ {Cσ}

where σ is a most general unifier of t and s.
▶ Side note: We often tacitly perform constraint elimination

after any inference step

▶ Possibly other ∀X -equivalence-preserving simplifications
16 / 28



SCAN Algorithm
Derivations

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

▶ A sequence of derivation steps D = (Dk)1≤k≤m is a derivation
from N if all Dk are applicable to Nk−1

▶ D is saturated if it cannot be extended to a longer sequence

17 / 28



Outline

Examples

SCAN Algorithm

Computing Witnesses

Dicussion & Conclusion

18 / 28



Computing Witnesses
Approach

▶ Compute witness iteratively from a saturated derivation
D = (Dk)1≤k≤m

▶ For all Nk we want a witness χk , i.e. it holds
|= (∃X Nk)↔ Nk [X ← χk ] for all 0 ≤ k ≤ m

▶ Last clause set Nm contains no X (D is saturated!), thus any
first-order predicate is a witness (we choose λu.⊥)

▶ Then extend witness χk of Nk to a witness χk−1 of Nk−1

across the derivation step Dk for all 1 ≤ k ≤ m using an
operation that takes Dk as input

▶ χ0 is a witness for N0 = N

N = N0
D1−→ N1

D2−→ . . .
Dm−1−→ Nm−1

Dm−→ Nm

χ0
ext←− χ1

ext←− . . .
ext←− χm−1

ext←− χm = λu.⊥

19 / 28



Computing Witnesses
Extending Witnesses across derivation steps

We define a first-order predicate ext(Dk , χ) via

ext(Res, χ) = χ

ext(Fac, χ) = χ

ext(TautDel, χ) = χ

ext(SubsDel, χ) = χ

ext(ConstrElim, χ) = χ

ext(ExtPur+X , χ) = λu.⊤
ext(ExtPur−X , χ) = λu.⊥

ext(PurK, χ) = resK [X ← χ]

20 / 28



Computing Witnesses
Resolution closure of a purified clause

▶ Recall purified clause deletion:

N ∪ {K}
PurKN

if K = (¬)X (t) ∨ C is purified with respect to (¬)X (t) in N
▶ For a purified clause K = ¬X (t) ∨ C define Res∗K to be the

closure of {X (u)} using constraint resolution on K , e.g.
▶ if K = ¬X (a), then Res∗K = {X (u), a ̸≈ u}
▶ if K = ¬B(u, v) ∨ ¬X (u) ∨ X (v), then Res∗K =

{X (u),

¬B(u, v) ∨ X (v),

¬B(u, v) ∨ ¬B(v , v ′) ∨ X (v ′),

¬B(u, v) ∨ ¬B(v , v ′) ∨ ¬B(v ′, v ′′) ∨ X (v ′′),

. . . }

▶ Analogous definition, if K = X (t) ∨ C , but perform closure of
{¬X (u)} under constraint resolution with K

21 / 28



Computing Witnesses
Extending Witnesses across purified clause deletion

Define resK via

resK =

{
λu.

∧
R(u,v)∈Res∗K

∀v R(u, v) if K = ¬X (t) ∨ C

λu.
∨

R(u,v)∈Res∗K
∃v ¬R(u, v) if K = X (t) ∨ C

▶ resK is potentially infinite!

22 / 28



Computing Witnesses
Example

(1) ¬B(a, v)
(2) X (a)

(3) ¬B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) ¬B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk χk

0 1, 2, 3, 4 λu.u ≈ a←− obtained witness
1 Res2,4 1, 2, 3, 4, 6 res2[X ← λu.⊥] = λu.u ≈ a

2 Pur2 1, 3, 4, 6 λu.⊥
3 ExtPur−X 1, 6 λu.⊥

23 / 28



Computing Witnesses
Example

(1) ¬B(a, v)
(2) X (a)

(3) ¬B(u, v) ∨ ¬X (u) ∨ X (v)

(4) ¬X (c)

(5) ¬B(a, v) ∨ X (v) (2 with 3)

(6) a ̸≈ c (2 with 4)

k Dk Nk χk

0 1, 2, 3, 4 res3.2[X ← χ1] is infinite!

1 Pur3.2 1, 2, 4 λu.u ≈ a

2 Res2,4 1, 2, 4, 6 res2[X ← λu.⊥] = λu.u ≈ a

3 Pur2 1, 4, 6 λu.⊥
4 ExtPur−X 1, 6 λu.⊥

24 / 28



Outline

Examples

SCAN Algorithm

Computing Witnesses

Dicussion & Conclusion

25 / 28



Discussion

▶ Currently still open whether the termination of SCAN on
clause sets ensures a finite witness in the presence of
redundancy:
▶ True, if we omit redundancy criteria
▶ Also true, if the derivation has the property that purified clause

deletion only occurs on clauses where X occurs with a single
polarity

▶ We conjecture that we can construct such a derivation from
any given saturated derivation

▶ There are formulas where SCAN terminates, but no witnesses
exist, e.g. ∃X ∃u ∃v (X (u) ∧ ¬X (v)) is equivalent to
∃u ∃v u ̸= v , but it can be shown that no witness exists
▶ Could skolemize, but then all witnesses contain Skolem

symbols which can be undesirable

26 / 28



Conclusion

We showed how to extend SCAN to solve the more general
WSOQE problem for the case of clause sets.

What we’re currently looking at:

▶ If SCAN terminates, is there always a finite witness?

▶ Investigate classes where SCAN terminates, including the
modal logic Sahlqvist class

▶ Finding and characterizing extended classes with SCAN-based
finite witnesses

▶ How can Skolemization be handled in witness generation?

27 / 28



References I

[Ack35] Wilhelm Ackermann.
”
Untersuchungen über das

Eliminationsproblem der mathematischen Logik“. In:
Mathematische Annalen 110.1 (1935), pp. 390–413.
doi: 10.1007/BF01448035.

[DLS97] Patrick Doherty, Witold Lukaszewicz, and
Andrzej Szalas.

”
Computing Circumscription Revisited:

A Reduction Algorithm“. In: Journal of Automated
Reasoning 18.3 (1997), pp. 297–336. doi:
10.1023/A:1005722130532.

[GO92] Dov Gabbay and Hans Jürgen Ohlbach.
”
Quantifier

Elimination in Second Order Predicate Logic“. In: South
African Computer Journal 7 (1992), pp. 35–43.

28 / 28

https://doi.org/10.1007/BF01448035
https://doi.org/10.1023/A:1005722130532

	Examples
	SCAN Algorithm
	Computing Witnesses
	Dicussion & Conclusion
	References

