Decidability of Diophantine satisfiability in theories close to IOpen

Fabian Achammer Stefan Hetzl

TU Wien

42nd Weak Arithmetic Days, Karlovassi, Greece September 26, 2023

Diophantine satisfiability

Definition (Diophantine satisfiability decision problem)

Let $L:=\{0,s,+,\cdot\}$ be the base language of arithmetic and let T be a theory in a language $L'\supseteq L$. Is

$$D_{\mathcal{T}} := \left\{ (t(ar{x}), u(ar{x})) \;\middle|\; egin{array}{l} t(ar{x}), u(ar{x}) \; ext{are} \; L ext{-terms such that} \ \mathcal{T} \cup \{\exists ar{x} \; t(ar{x}) = u(ar{x})\} \; \; ext{is consistent} \end{array}
ight\}$$

decidable?

Observation

 $D_T = \{(t, u) \mid T \mid \neg \forall \bar{x} \ t \neq u\}^c$. Thus D_T is decidable if and only if the set of T-refutable Diophantine equations is decidable.

Current results

- ▶ D_Q is decidable where Q is Robinson arithmetic¹
- ▶ D_T is undecidable for theories T which extend $I\Delta_0 + EXP$ (consequence of the MRDP theorem)²
- ▶ D_T is undecidable for theories T which extend IU_1^{-3}
- Decidability of D_{IOpen} where IOpen is theory of open induction over {0, s, +, ·, ≤} is long-standing open problem⁴
- We show Diophantine decidability of the theory of open induction over {0, s, p, +, ⋅}

¹Jeř16.

²GD82.

³Kay93.

⁴She64.

Outline

Theories

Proof strategy

Decidability

Conclusion

IOp

- ▶ Language $L_p := \{0, s, +, \cdot, p\}$
- ▶ Base theory A: universal closures of

▶ Induction axiom $I(\varphi(x, \bar{z}))$

$$\forall \bar{z} \ (\varphi(0,\bar{z}) \to \forall x \, (\varphi(x,\bar{z}) \to \varphi(s(x),\bar{z})) \to \forall x \, \varphi(x,\bar{z}))$$

▶ IOp := $A \cup \{I(\varphi) | \varphi \text{ quantifer-free } L_p\text{-formula}\}$

IOp

Result by Shepherdson⁵

IOp is equivalent to A together with universal closures of

$$x = 0 \lor x = s(p(x)) \quad (B_1)$$

$$x + y = y + x \quad (B_2)$$

$$(x + y) + z = x + (y + z) \quad (B_3)$$

$$x + y = x + z \to y = z \quad (B_4)$$

$$x \cdot y = y \cdot x \quad (B_5)$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad (B_6)$$

$$x \cdot (y + z) = x \cdot y + x \cdot z \quad (B_7)$$

and

$$dx = dy \rightarrow \bigvee_{i=0}^{d-1} (z+i) \cdot x = (z+i) \cdot y \ (C'_d)$$
 for $d \ge 2$.

⁵She67.

Related theories

- $ightharpoonup AB := \{A_1, \ldots, A_7, B_1, \ldots, B_7\}$
- ▶ $AB^{\exists} := (AB \setminus \{A_2, A_3, B_1\}) \cup \{B_1^{\exists}\}$ where B_1^{\exists} is the universal closure of

$$x = 0 \lor \exists y \, x = \mathsf{s}(y)$$

▶ $ABC_d := AB^{\exists} \cup \{C_d \mid d \ge 2\}$ where C_d is the universal closure of

$$dx = dy \rightarrow x = y$$

Theorem (Schmerl⁶)

$$D_{\mathsf{IOp}} = D_{AB} = D_{AB^{\exists}} = D_{ABC_d}$$

Main Theorem

 D_{IOp} is decidable.

⁶Sch88.

Outline

Theories

Proof strategy

Decidability

Conclusion

Proof strategy

- ▶ By result from Schmerl it suffices to show decidability of $D_{AB^{\exists}}$
- lacktriangle Construct a specialized proof calculus \mathcal{AB} operating on $\mathbb{Z}[V]$
- ▶ Show soundness and completeness of \mathcal{AB} with respect to Diophantine satisfiability in \mathcal{AB}^{\exists}
- ightharpoonup Show decidability of \mathcal{AB}

Terms as polynomials

- ▶ Let V be the set of variables.
- ▶ To a term t we assign the polynomial $poly(t) \in \mathbb{N}[V]$ it evaluates to.
- ▶ To a $p \in \mathbb{N}[V]$ we assign a term \underline{p} (by choosing a fixed ordering on V) such that

Lemma

For every term t we have $AB^{\exists} \vdash t = \underline{poly(t)}$.

Equations as polynomials

- For $p \in \mathbb{Z}[V]$ and a monomial m we write [m]p for the coefficient of m in p.
- ► We set

$$p^+ := \sum_{m:[m]p>0} ([m]p)m \qquad p^- := -\sum_{m:[m]p<0} ([m]p)m.$$

Consider the additive cancellation axiom

$$x + y = x + z \rightarrow y = z$$
 (B₄)

Lemma

Let t, u be terms and set p := poly(t) - poly(u). Then $AB^{\exists} \vdash t = u \leftrightarrow \underline{p^+} = \underline{p^-}$

Calculus AB

signed rule

Definition (signed polynomial)

 $p \in \mathbb{Z}[V]$ is positively signed if all coefficients of p are non-negative and the constant coefficient is positive. p is negatively signed if -p is positively signed. p is signed if it is positively or negatively signed

Consider the axiom A_1

$$s(x) \neq 0$$

We translate this into an initial inference rule on polynomials

where $p \in \mathbb{Z}[V]$ is signed

Calculus \mathcal{AB}

zero-or-successor rule

Consider the axiom B_1^{\exists} , the universal closure of

$$x = 0 \lor \exists y \, x = \mathsf{s}(y)$$

In $AB^{\exists} \setminus \{B_1^{\exists}\}$, instead of considering all possible instances of B_1^{\exists} it is enough consider variable instances:

Proposition

Let t be a term and let x_1, \ldots, x_n be all its free variables. Then

$$AB^{\exists} \setminus \left\{ B_1^{\exists} \right\}, B_1^{\exists}[x_1], \dots, B_1^{\exists}[x_n] \vdash B_1^{\exists}[t]$$

Calculus AB

zero-or-successor rule

Let X be a set of variables. We set

$$\Theta(X) := \{\theta : X \to \mathbb{N}[V] \mid \text{ for all } x \in X : \theta(x) \in \{0, x+1\}\}$$

Let vars(p) be the set of variables that occur in $p \in \mathbb{Z}[V]$. We translate B_1^{\exists} into an inference rule

$$\frac{p\theta \text{ for all }\theta \in \Theta(\mathsf{vars}(p))}{p} \text{ } \textit{zero-or-successor}$$

where p is not signed.

Calculus \mathcal{AB}

Example

Let \mathcal{AB} be the proof calculus operating on $\mathbb{Z}[V]$ with the inference rules *signed* and *zero-or-successor*.

We abbreviate signed as s and zero-or-successor as z:

$$\frac{1}{2} \frac{s}{-2y-1} \frac{s}{-2x-1} \frac{-1}{s} \frac{s}{-1} \frac{s}{-1} \frac{s}{-1} \frac{s}{2xy+2x+2y+1} \frac{s}{z} \frac{s}{2xy-2x-2y+1}$$

Calculus \mathcal{AB}

Soundness and Completeness

Theorem (Soundness and Completeness of \mathcal{AB})

 $\textit{AB} \hspace{0.2em} \mid\hspace{0.5em} \forall \bar{x} \hspace{0.1em} t \neq \textit{u} \hspace{0.1em} \textit{if and only if} \hspace{0.1em} \textit{AB} \hspace{0.2em} \mid\hspace{0.5em} \mathsf{poly}(t) - \mathsf{poly}(\textit{u})$

Proof sketch.

Do proof translations in both directions.

Outline

Theories

Proof strategy

Decidability

Conclusion

Tilted polynomials

Definition (tilted polynomial)

We say $p \in \mathbb{Z}[V]$ is positively tilted if for all monomials m^- with $[m^-]p^- \neq 0$ there exists a monomial m^+ with $[m^+]p^+ \neq 0$ such that m^- strictly divides m^+ .

We say p is *negatively tilted*, if -p is positively tilted.

If p is positively or negatively tilted, we say p is tilted.

Example

$$\begin{cases} x^2 - x + 1 \\ xy - 2x - 2y \end{cases}$$
 tilted
$$\begin{cases} 0 \\ x - y \\ xy - x^2 - y^2 \end{cases}$$
 not tilted

Closure property in \mathcal{AB}

Lemma

If $p \in \mathbb{Z}[V]$ is positively (negatively) signed, then p is positively (negatively) tilted.

Lemma

Let $p \in \mathbb{Z}[V]$ and $\theta(x) := x + 1$. Then p is positively (negatively) tilted if and only if $p\theta$ is positively (negatively) tilted.

Corollary

If $AB \vdash p$, then p is tilted.

An order on $\mathbb{N}[V]$

- For $p \in \mathbb{N}[V]$ we write mons(p) for the multiset of monomials where each monomial m occurs [m]p many times.
- For $p, q \in \mathbb{N}[V]$ we write $p <_{mon} q$ if for all $m \in \mathsf{mons}(p) \mathsf{mons}(q)$ there exists an $m' \in \mathsf{mons}(q) \mathsf{mons}(p)$ such that m strictly divides m'.
- Note: $p \in \mathbb{Z}[V]$ is positively (negatively) tilted if and only if $p^+ >_{mon} p^- (p^- >_{mon} p^+)$.
- <_{mon} is the multiset extension of strict divisibility of monomials.

Lemma

 $<_{mon}$ is a well-founded partial order on $\mathbb{N}[V]$.

An order on tilted polynomials

- ▶ For $p, q \in \mathbb{Z}[V]$ we write $p \prec_{vars} q$ if |vars(p)| < |vars(q)|.
- For tilted p we set $min(p) := min_{<_{mon}}(p^+, p^-)$.
- ▶ For tilted p, q we write $p \prec_{mon} q$ if $min(p) <_{mon} min(q)$.
- ▶ Let \prec_t to be the lexicographic product $\prec_{vars} \times \prec_{mon}$.

Lemma

 $\prec_{\it vars}$, $\prec_{\it mon}$ and $\prec_{\it t}$ are well-founded partial orders on tilted polynomials.

Proof candidate trees

Definition

For $p \in \mathbb{Z}[V]$ we recursively define the *proof candidate tree of p* as the smallest tree T(p) such that

- \triangleright p is a node of T(p) and
- ▶ if q is a node of T(p), q is tilted and not signed, then T(p) contains all nodes $q\theta$ for $\theta \in \Theta(\text{vars}(q))$. In that case $(q, q\theta)$ is an edge of T(p).

Proof candidate trees

Finiteness of T(p)

Lemma

T(p) is finitely branching.

Lemma

Let $p \in \mathbb{Z}[V]$ be tilted and let $\theta \in \Theta(\text{vars}(p))$. Then $p \succ_t p\theta$.

Proposition

T(p) is finite.

Proof.

We use Kőnig's lemma:

- ightharpoonup T(p) is finitely branching.
- ▶ If a branch in T(p) only contains tilted polynomials, then it is well-ordered by \prec_t which means it is finite.
- ▶ If a branch in T(p) contains a non-tilted polynomial, the branch must be finite since no edges originate from non-tilted polynomials.

Decision procedure

Lemma

 $\mathcal{AB} \vdash p$ if and only if all leaves of T(p) are signed polynomials.

Corollary

AB is decidable.

Decision procedure.

Construct T(p) and check if all leaves are signed polynomials.

Calculus ABC

Consider the additional axiom C, the universal closure of

$$x \neq 0 \rightarrow (x \cdot y = x \cdot z \rightarrow y = z)$$

Over AB, it is equivalent to the universal closure of

$$y \neq z \rightarrow s(x) \cdot y \neq s(x) \cdot z$$
.

This translates into the inference rule

$$\frac{q}{pq}$$
 factor

where p is signed.

Let \mathcal{ABC} be the proof calculus consisting of the rules from \mathcal{AB} and the additional rule *factor*.

Theorem (Soundness and Completeness of \mathcal{ABC})

$$\mathcal{ABC} \vdash \mathsf{poly}(t) - \mathsf{poly}(u)$$
 if and only if $ABC \vdash \forall \bar{x} \ t \neq u$

Equivalence of \mathcal{AB} and \mathcal{ABC}

Lemma

If p is signed and θ is a substitution, then $p\theta$ is signed.

Lemma

If p and q are signed, then pq is signed.

Proposition

 $\mathcal{ABC} \vdash p$ if and only if $\mathcal{AB} \vdash p$.

Proof sketch for \Rightarrow .

- Move instances of factor above instances of zero-or-successor (uses that signed polynomials are closed under substitution).
- Top-most chains of factor inferences can be replaced by a single signed using previous lemma.

Corollary

$$D_{AB} = D_{ABC}$$

Outline

Theories

Proof strategy

Decidability

Conclusion

Summary

Main Theorem

 D_{IOp} is decidable.

Proof sketch.

- ightharpoonup By result from Schmerl it suffices to prove decidability of D_{AB}
- lacktriangle Construct a specialized proof calculus \mathcal{AB} operating on $\mathbb{Z}[V]$.
- Show soundness and completeness with respect to disequalities using proof-theoretic methods.
- Show that AB is decidable with closure properties and an appropriate well-order.

Outlook

Theory <i>T</i>	D_T decidable?
Q	yes ⁷
IOp, AB, ABC _d , ABC	yes
PA^-	unknown
lOpen	unknown
extensions of IU_1^-	no ⁸
extensions of $I\Delta_0 + EXP$	no ⁹

⁷Jeř16. ⁸Kay93. ⁹GD82.

References I

- [GD82] Haim Gaifman and C. Dimitracopoulos. "Fragments of Peano's Arithmetic and the MRDP theorem". In:

 Monographie de L'Enseignement Mathematique 30 (Jan. 1982), pp. 187–206.
- [Jeř16] Emil Jeřábek. "Division by zero". In: Archive for Mathematical Logic 55.7-8 (2016), pp. 997–1013. DOI: 10.1007/s00153-016-0508-5. URL: https://doi.org/10.1007%2Fs00153-016-0508-5.
- [Kay93] Richard Kaye. "Hilbert's tenth problem for weak theories of arithmetic". In: Annals of Pure and Applied Logic 61.1 (1993), pp. 63-73. ISSN: 0168-0072. DOI: https://doi.org/10.1016/0168-0072(93)90198-M. URL: https://www.sciencedirect.com/science/article/pii/016800729390198M.

References II

- [Sch88] Ulf R. Schmerl. "Diophantine equations in fragments of arithmetic". In: Annals of Pure and Applied Logic 38.2 (1988), pp. 135-170. ISSN: 0168-0072. DOI: https://doi.org/10.1016/0168-0072(88)90051-6. URL: https://www.sciencedirect.com/science/ article/pii/0168007288900516.
- [She64] J. Shepherdson. "A Non-Standard Model for a Free Variable Fragment of Number Theory". In: Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 12 (1964).
- [She67] J. Shepherdson. "The rule of induction in the three variable arithmetic based on + and ". en. In: *Annales scientifiques de l'Université de Clermont. Mathématiques* 35.4 (1967), pp. 25–31.