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Motivation

» Generalizes many problems in computational logic such as
software verification and inductive theorem proving.

» Serves as a common logical language for these disparate
research activities.

» Studied since end of 19th/beginning of 20th century
» No thorough investigation yet

2/37



Outline

Short introduction to mathematical logic
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Second-order logic
Syntax

» Language: Set of function/relation symbols with assigned
arities, e.g.
> groups: {-/2,e/0,71/1,= /2}
> arithmetic: {+/2,-/2,0/0,1/0,= /2,< /2}
> graphs: {E/2,=/2}
» Terms: Built inductively from variables u, v, w,... and
function symbols, e.g.
> u-(v-e)
> (1+1)+(0-u)
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Second-order logic

Syntax

» Formulas: Built inductively from

>
>

>

vy

T, L ("true", "false”)

R(ti, ..., ty) for relation symbol R of arity n and terms
t,..., t

X(t1,...,t,) for relation variable X of arity n and terms
t1,...,th

propositional connectives: negation (=), conjunction (A),

disjunction (V), implication (=), equivalence (+).

quantification over individuals: for all (Vu) and exists (Ju)
quantification over relations: for all (VX), exists (3X)
e.g.

> VT
> A(x) A 2A(x)
> AXVuVv (X(u,v) — X(v,u))

» A formula is called first-order if it does not contain
quantification over relations.
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Second-order logic

Semantics

» [-Structure M: A non-empty set M together with
» assignment of function symbols f/n of L to functions
MM — M.
> assignment of relation symbols R/n of L to relations
RM C M".
> e.g. N together with the assignment of +, -, 0, 1, =, < to the
actual addition, multiplication, zero, one, equality and
less-than-or-equal on natural numbers
» We write M = ¢ (" M satisfies/models ¢") if formula ¢
holds in M, e.g.
» NEVu0<u NEIJuVvv<u
>» CEYuVvu-v=v-u but HEVuVYvu - v=v-u
» We write |= ¢ ("¢ is valid”) if ¢ holds in all L-structures, e.g.
» =E(AAB)—= A
> EVX (3uvv X(u,v) — VvIuX(u,v))
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Decidability

» Decision problem: Let an input set S be fixed. Given D C S,
is there an algorithm which given an input x € S answers
"yes" if x € D and answers "no” if x ¢ D?

» If such an algorithm exists, we call D decidable.

» Examples of decidable sets:

P the set of prime numbers inside the natural numbers,
» the set of connected graphs inside the class of finite graphs.

» Examples of undecidable sets:

» The set of programs p and inputs / such that p terminates on
input i (halting set),
> the set of first-order formulas ¢ such that N = .
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Outline

Formula equations
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Formula equations
Motivation

» Equation: Given terms t(x), s(x), find an a such that

t(a) = s(a).

» On formulas: Given formulas ¢(X), ¥(X), find a formula x
such that

F e(x) < ¥(x)

» (x) describes the formula where every occurrence of
X(t1,...,ty) in @ is substituted by x(t1,..., t,) (given
compatible arities)

» Simplification: Given ¢(X), find a formula x such that

F e(x)
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Formula equations

Definition

Definition

A formula equation is a formula of the form

Xy ... Xno(X1, ..., Xn) where (X1 ...X,) is a first-order
formula. A solution of 3X1 ... X, ¢(X1,...,X,) modulo a

structure M is a tuple of first-order formulas x1, ..., Xn such that
MEp(x1,- -5 Xn)-
» We often abbreviate tuples (a1, ..., ap) by 3

> formula equation 3X ¢(X)
» solution tuple ¥
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Formula equations

Examples

> 3X X(0)
> some solutions are x(u) := u =0 and x(v) := T (modulo any
structure M)
» 3X (X(0) A —=X(0))
> has no solutions

> 3X (X(0) AVu(X(u) = X(u+2)) AVu(X(u) = - X(u+1)))
> a solution modulo N is x(v) :=3vu=v+v

Remark

There are valid, but unsolvable formula equations, i.e. there exist
©(X) such that N = 3X o(X), but 3X ¢(X) has no solutions
modulo N.
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Solution problems

» Is there an algorithm, such that given any instance of a
formula equation, determines whether it has a solution
modulo a structure M?

Instances of solution problems capture the following problems:
> Satisfiability of propositional formulas (NP-complete)
» Validity of first-order formulas (undecidable)
> Software verification (undecidable)
» Affine solution problem (decidable)
» Convex solution problem (open)
Other avenues for research:

» Use techniques from one area and apply it to solve problems
in another area

» Find sets of formulas which are closed under solutions to
formula equations

> ..
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Outline

Affine solution problem
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Affine formula equations
We work in the language L,g:
» zero 0/0,
» one 1/0,
» addition +/2,
» equality = /2 and
» scalar multiplication (c/1 for every ¢ € Q).
modulo the theory of the rational numbers Q.

» Can assume w.l.o.g. that every term t(xi,...,xp) is of the
form cp + >_"_; cix; and every first-order atomic formula is of
the form t(x1,...,x,) = 0 for some term t

» Every term t(x,..., x,) induces an affine function
t2: Q"= Q

» Every first-order atomic formula A(xi, ..., x,) induces an
affine subspace A2 C Q" or the empty set

» Conjunctions of atomic formulas describe systems of linear

equations and thus affine spaces.
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Affine formula equations

Definition (Affine solution problem)

Input: A quantifier-free L,#-formula (X, 1)
Output: Is there a solution ¥ of 3X Vi (X, ) modulo Q such
that all x; are conjunctions of atoms?

Theorem (Hetzl, Zivota '19 )
The affine solution problem is decidable.*

1HZ19.
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Decision procedure

Clausification

Every quantifier-free formula can transformed into an equivalent
formula ¢’ in conjunctive normal form:

GA---NCy
where each C; is a clause, i.e. of the form

A() A Xy (t(@)) A - A X (8 (2))
= Bu(@) V-V Bn(@) V X (G1(@) V- X (84 (2))
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Decision procedure

Example

Consider the affine formula equation

X(1,0)
AXVuVv | A(X(—u,v) = X(—v,u)V X(u,—v))
ANX(u,v) > u=vVv=0)

which is already in clause form. Its clauses are

—X(1,0)
X(—u,v) =X(—v,u) VvV X(u,—v)
X(u,v) su=vVv=0.
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Decision procedure

Translation to affine conditions

Over Q the clause

A(@) A Xy (B(@) A - - A X (B(T))
= Bi(@) V-V Bn(@) V Xy (G142 (@) V- - X, (E14,())

translates into the condition

| m [+r
AN NEH M) c U Biu | @D )
j=1 k=1 k=I+1

where the X are unknown affine subspaces.
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Affine solution problem

Geometric formulation

Input: p € N and for each 1 < i < m affine spaces

ABE . ,B;_ C Q", affine transformations T7, ..., T,i, . T,iJrri
and indices for the unknowns ji,...,ji,....ji+r, € {1,...,p}.
Output: For all 1 </ < m are there affine spaces &7,..., &, C Q"
such that for all 1 < i < m there holds

I; li+r;
A0 (WTHTHAXG) < UBkU U (MO
k=1 k=I+1
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Decision procedure

Example

Remember the clauses

—X(1,0)
X(—u,v) = X(—v,u) VvV X(u,—v)
X(u,v) u=vVv=0.
Let f(u,v):=(1,0)7, g(u,v) := (—u,v)7, h(u,v) := (—v,u)T,

k(u,v) := (u,—v)T. The clauses translate into conditions on the
affine space X

Q* C ()
g 1 (X) Ch (X ukTHX)
X C [(1,1)T} U [(1,0)T}
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Decision procedure
Covering property

Lemma

Let V' be a vector space over Q and let A, B1,...,Bm be affine
subspaces of V. If A C \J", B;, then A C B; for some
ie{l,...,m}.
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Decision procedure
Projections
Definition
A projection of an affine condition of the form

/ I4+r
A0 NG X U BlU | (&
J=1 j=I41
is a condition of the form
I4+r
A%n ﬂ (ITJQ)*l(XiJ-) - B;(Q (upper bound condition)
j=I+1
or
I4+r
A% () EH M) € &) M) &S A@mﬂ (X)) € A
j=I+1 j=1
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Decision procedure

Projections

Corollary
An affine condition of the form

m I+r
AN ﬂ(t 47N U Beu U@
Jj=1 k=1 Jj=I+1

is solvable iff one of its projections is solvable.
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Decision procedure
Example
Remember the affine conditions:

FQ*) cx
g HX) S A (X)) UKTHX)
X C [(1,1)T} U [(1,0)7}

Induces four sets of affine conditions that are projections:

FQ*) cx FQ*) cx

hg (X)) C X h(g (X)) C X
X C [(1,1)7] X C [(1,0)T]

FQ%) cx fQ*) cx

k(g 1 (X)) cx k(g H(x) cx
X C [(1,1)7} X C [(1,0)T]
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Decision procedure

Fixed-point iteration
Define
x© .— 1]
XU = aff(xY L YY)
where y,.(f) is the union of left-hand sides of lower bound conditions
of X; where X is substituted by X,-(J).

Theorem
The affine solution problem is decidable.

Proof.
» Fixed point iteration is monotone.
> Affine spaces satisfy ascending chain condition.

» lteration terminates with smallest solution of lower bound
conditions.

» Suffices to check if upper bound conditions are satisfied.
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Decision procedure

Example
Remember the third set of projections:
fF(@Q%) cx
k(g M (X)) c &
xc |1y

Doing the fixed point iteration yields
x© =y
20 = afr(£(@%) = {(1.0)7}
X@ = aff (XM U k(g 1 (x D)) = [(1,0)T]
X0 = =[(1,0)7]

Fixed point reached, but does not satisfy upper bound.
26 /37



Decision procedure

Example

Now instead consider the fourth set of projections:

Same lower bound conditions as before thus fixed point iteration
yields the same result [(1, 0) T] which this time satisfies the upper
bound.
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Outline

Convex solution problem
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Convex solution problem

We work in the language Lcony:

>
>
>
>
>

| 4

zero 0/0,

one 1/0,

addition +/2,

equality = /2,

scalar multiplication (c/1 for every ¢ € Q) and

inequality < /2.

modulo the theory of the rational numbers Q.

>

>

Can assume w.l.o.g. that every first-order atomic formula is of
the form Y7 cixi < d

Conjunctions of atomic formulas describe systems of linear
inequalities and thus (possibly unbounded) convex polytopes.
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Convex solution problem

Geometric formulation

Definition (Convex solution problem)

Input: p € N and for each 1 < i < m convex polytopes

Al Bl,.. B’ C Q", affine transformations Tl,... T,i,...T,iJrri
and |nd|ces for the unknowns Jiseeosdlps oo diern €{1,...,p}
Output: For all 1 </ < m are there convex polytopes
X1,..., X, € Q" such that for all 1 </ < m there holds

I; litri
A0 (T, U Biu J (TH (A7
k=1 k=Ili+1

Decidability is still open! Previous proof fails because:
» Covering property fails for convex polytopes

> lteration procedure might not terminate (no ACC)
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Convex solution problem

In the rational plane

Definition (Convex solution problem in the rational plane)
Input: A rotation T : Q%> — Q?, and points p, g € Q?

Output: Is there a convex polytope X such that pe X, g € X and
T(X)CAx?

Theorem (Zivota '21)

The convex solution problem in the rational plane is decidable.?

2Ziv21.
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Convex solution problem
Intervals
Definition (Box)
A box B C 7" is a product of (possibly unbounded) intervals in Z.

Definition (Interval solution problem)
Input: p € N and for each 1 </ < m boxes A", Bj,...,B. CZ",
affine transformations 77, ..., T,:,, . T,:,Jrri and indices for the

unknowns ji,...,jp, .-, ji+r € {1,...,p}.
Output: For all 1 </ < m are there boxes &7,..., &, C Z" such
that for all 1 < i < m there holds

I; li+r;
A0 (W (TH7HAG,) < U Biu |J (T ()7
k=1 k=li+1

Theorem (Zivota '21)

The interval solution problem is decidable.3
3Ziv21. 32/37




Generalized convex solution problem

We work in the language Lcony:
» zero 0/0,

» one 1/0,

» addition +/2,

> equality = /2,

» multiplication -/2 and
> inequality < /2.

modulo the theory of the rational numbers Q.

» Can assume w.l.o.g. that every first-order atomic formula is of
the form p(xi,...,xn) <0 for a polynomial p € Q[x1, ..., xn]

» Conjunctions of atomic formulas describe systems of
polynomial inequalities.
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Generalized convex solution problem

Definition
We call a set A C Q" polynomially constrained if it is a finite
intersection of sets of the form {x € Q" | p(x) < 0} for a

polynomial p € Q[x].

Definition (Generalized convex solution problem)

Input: p € N and for each 1 < < m polynomially constrained
Al B B’ C Q", affine transformations T7, ..., T,:_ Tl,-+r,-
and |nd|ces for the unknowns ji, ..., j, ... ji4r, € {1,...,p
Output: For all 1 </ < m are there convex polytopes
X1,..., X, € Q" such that for all 1 </ < m there holds

I; li+r;
AT (T H(X) < U Biu | (TH )7
k=1 k=li+1

34/37



Generalized convex solution problem

Theorem (Monniaux '19)
The generalized convex solution problem is undecidable.*

In fact it suffices to only allow the polynomials in the input to be
quadratic!

4Mon109.
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Conclusion

» Formula equations serve as a common framework for many
problems in computational logic
» SAT problem, inductive theorem proving, software verification,

» Potential to integrate techniques from disparate research
communities

» Solution problems suggest lots of avenues for further research
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