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Motivation

▶ Generalizes many problems in computational logic such as
software verification and inductive theorem proving.

▶ Serves as a common logical language for these disparate
research activities.

▶ Studied since end of 19th/beginning of 20th century

▶ No thorough investigation yet
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Second-order logic
Syntax

▶ Language: Set of function/relation symbols with assigned
arities, e.g.
▶ groups:

{
·/2, e/0,−1/1,= /2

}
▶ arithmetic: {+/2, ·/2, 0/0, 1/0,= /2,≤ /2}
▶ graphs: {E/2,= /2}

▶ Terms: Built inductively from variables u, v ,w , . . . and
function symbols, e.g.
▶ u · (v · e)
▶ (1 + 1) + (0 · u)
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Second-order logic
Syntax

▶ Formulas: Built inductively from
▶ ⊤, ⊥ (”true”, ”false”)
▶ R(t1, . . . , tn) for relation symbol R of arity n and terms

t1, . . . , tn
▶ X (t1, . . . , tn) for relation variable X of arity n and terms

t1, . . . , tn
▶ propositional connectives: negation (¬), conjunction (∧),

disjunction (∨), implication (→), equivalence (↔).
▶ quantification over individuals: for all (∀u) and exists (∃u)
▶ quantification over relations: for all (∀X ), exists (∃X )
▶ e.g.

▶ ¬⊥ ∨ ⊤
▶ A(x) ∧ ¬A(x)
▶ ∃X ∀u ∀v (X (u, v) → X (v , u))

▶ A formula is called first-order if it does not contain
quantification over relations.
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Second-order logic
Semantics

▶ L-Structure M: A non-empty set M together with
▶ assignment of function symbols f /n of L to functions

f M : Mn → M.
▶ assignment of relation symbols R/n of L to relations

RM ⊆ Mn.
▶ e.g. N together with the assignment of +, ·, 0, 1, =, ≤ to the

actual addition, multiplication, zero, one, equality and
less-than-or-equal on natural numbers

▶ We write M |= φ (”M satisfies/models φ”) if formula φ
holds in M, e.g.
▶ N |= ∀u 0 ≤ u, N ̸|= ∃u ∀v v ≤ u
▶ C |= ∀u ∀v u · v = v · u, but H ̸|= ∀u ∀v u · v = v · u

▶ We write |= φ (”φ is valid”) if φ holds in all L-structures, e.g.
▶ |= (A ∧ B) → A
▶ |= ∀X (∃u ∀v X (u, v) → ∀v ∃u X (u, v))
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Decidability

▶ Decision problem: Let an input set S be fixed. Given D ⊆ S ,
is there an algorithm which given an input x ∈ S answers
”yes” if x ∈ D and answers ”no” if x ̸∈ D?

▶ If such an algorithm exists, we call D decidable.
▶ Examples of decidable sets:

▶ the set of prime numbers inside the natural numbers,
▶ the set of connected graphs inside the class of finite graphs.

▶ Examples of undecidable sets:
▶ The set of programs p and inputs i such that p terminates on

input i (halting set),
▶ the set of first-order formulas φ such that N |= φ.
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Formula equations
Motivation

▶ Equation: Given terms t(x), s(x), find an a such that

t(a) = s(a).

▶ On formulas: Given formulas φ(X ), ψ(X ), find a formula χ
such that

φ(χ) = ψ(χ)

|= φ(χ) ↔ ψ(χ)

▶ φ(χ) describes the formula where every occurrence of
X (t1, . . . , tn) in φ is substituted by χ(t1, . . . , tn) (given
compatible arities)

▶ Simplification: Given φ(X ), find a formula χ such that

|= φ(χ)
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Formula equations
Definition

Definition
A formula equation is a formula of the form
∃X1 . . .Xn φ(X1, . . . ,Xn) where φ(X1 . . .Xn) is a first-order
formula. A solution of ∃X1 . . .Xn φ(X1, . . . ,Xn) modulo a
structure M is a tuple of first-order formulas χ1, . . . , χn such that
M |= φ(χ1, . . . , χn).

▶ We often abbreviate tuples (a1, . . . , an) by a
▶ formula equation ∃X φ(X )
▶ solution tuple χ
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Formula equations
Examples

▶ ∃X X (0)
▶ some solutions are χ(u) := u = 0 and χ(u) := ⊤ (modulo any

structure M)

▶ ∃X (X (0) ∧ ¬X (0))
▶ has no solutions

▶ ∃X (X (0)∧∀u (X (u) → X (u+2))∧∀u (X (u) → ¬X (u+1)))

▶ a solution modulo N is χ(u) := ∃v u = v + v

Remark
There are valid, but unsolvable formula equations, i.e. there exist
φ(X ) such that N |= ∃X φ(X ), but ∃X φ(X ) has no solutions
modulo N.
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Solution problems
▶ Is there an algorithm, such that given any instance of a

formula equation, determines whether it has a solution
modulo a structure M?

Instances of solution problems capture the following problems:

▶ Satisfiability of propositional formulas (NP-complete)

▶ Validity of first-order formulas (undecidable)

▶ Software verification (undecidable)

▶ Affine solution problem (decidable)

▶ Convex solution problem (open)

Other avenues for research:

▶ Use techniques from one area and apply it to solve problems
in another area

▶ Find sets of formulas which are closed under solutions to
formula equations

▶ ...
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Affine formula equations
We work in the language Laff :

▶ zero 0/0,

▶ one 1/0,

▶ addition +/2,

▶ equality = /2 and

▶ scalar multiplication (c/1 for every c ∈ Q).

modulo the theory of the rational numbers Q.

▶ Can assume w.l.o.g. that every term t(x1, . . . , xn) is of the
form c0 +

∑n
i=1 cixi and every first-order atomic formula is of

the form t(x1, . . . , xn) = 0 for some term t

▶ Every term t(x1, . . . , xn) induces an affine function
tQ : Qn → Q

▶ Every first-order atomic formula A(x1, . . . , xn) induces an
affine subspace AQ ⊆ Qn or the empty set

▶ Conjunctions of atomic formulas describe systems of linear
equations and thus affine spaces.
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Affine formula equations

Definition (Affine solution problem)

Input: A quantifier-free Laff -formula φ(X , u)
Output: Is there a solution χ of ∃X ∀u φ(X , u) modulo Q such
that all χi are conjunctions of atoms?

Theorem (Hetzl, Zivota ’19 )

The affine solution problem is decidable.1

1HZ19.
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Decision procedure
Clausification

Every quantifier-free formula can transformed into an equivalent
formula φ′ in conjunctive normal form:

C1 ∧ · · · ∧ Ck

where each Ci is a clause, i.e. of the form

A(u) ∧ Xi1(t1(u)) ∧ · · · ∧ Xil (tl(u))

→ B1(u) ∨ · · · ∨ Bm(u) ∨ Xil+1
(tl+1(u)) ∨ . . .Xil+r

(tl+r (u))
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Decision procedure
Example

Consider the affine formula equation

∃X ∀u ∀v

 X (1, 0)
∧(X (−u, v) → X (−v , u) ∨ X (u,−v))

∧(X (u, v) → u = v ∨ v = 0)


which is already in clause form. Its clauses are

→X (1, 0)

X (−u, v) →X (−v , u) ∨ X (u,−v)

X (u, v) →u = v ∨ v = 0.
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Decision procedure
Translation to affine conditions

Over Q the clause

A(u) ∧ Xi1(t1(u)) ∧ · · · ∧ Xil (tl(u))

→ B1(u) ∨ · · · ∨ Bm(u) ∨ Xil+1
(tl+1(u)) ∨ . . .Xil+r

(tl+r (u))

translates into the condition

AQ ∩
l⋂

j=1

(tj
Q)−1(Xij ) ⊆

m⋃
k=1

BQ
k ∪

l+r⋃
k=l+1

(tk
Q)−1(Xik )

where the Xi are unknown affine subspaces.
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Affine solution problem
Geometric formulation

Input: p ∈ N and for each 1 ≤ i ≤ m affine spaces
Ai ,Bi

1, . . . ,Bi
si
⊆ Qn, affine transformations T i

1, . . . ,T
i
li
, . . .T i

li+ri
and indices for the unknowns j1, . . . , jli , . . . , jli+ri ∈ {1, . . . , p}.
Output: For all 1 ≤ i ≤ m are there affine spaces X1, . . . ,Xp ⊆ Qn

such that for all 1 ≤ i ≤ m there holds

Ai ∩
li⋂

k=1

(T i
k)

−1(Xjk ) ⊆
si⋃

k=1

Bi
k ∪

li+ri⋃
k=li+1

(T i
k)

−1(Xjk )?
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Decision procedure
Example

Remember the clauses

→X (1, 0)

X (−u, v) →X (−v , u) ∨ X (u,−v)

X (u, v) →u = v ∨ v = 0.

Let f (u, v) := (1, 0)T , g(u, v) := (−u, v)T , h(u, v) := (−v , u)T ,
k(u, v) := (u,−v)T . The clauses translate into conditions on the
affine space X :

Q2 ⊆ f −1(X )

g−1(X ) ⊆ h−1(X ) ∪ k−1(X )

X ⊆
[
(1, 1)T

]
∪
[
(1, 0)T

]
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Decision procedure
Covering property

Lemma
Let V be a vector space over Q and let A,B1, . . . ,Bm be affine
subspaces of V . If A ⊆

⋃m
i=1 Bi , then A ⊆ Bi for some

i ∈ {1, . . . ,m}.
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Decision procedure
Projections

Definition
A projection of an affine condition of the form

AQ ∩
l⋂

j=1

(tj
Q)−1(Xij ) ⊆

m⋃
k=1

BQ
k ∪

l+r⋃
j=l+1

(tj
Q)−1(Xij )

is a condition of the form

AQ ∩
l+r⋂

j=l+1

(tj
Q)−1(Xij ) ⊆ BQ

k (upper bound condition)

or

AQ∩
l+r⋂

j=l+1

(tj
Q)−1(Xij ) ⊆ (tk

Q)−1(Xik )tk
Q(AQ∩

l⋂
j=1

(tj
Q)−1(Xij )) ⊆ Xik (lower bound condition)
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Decision procedure
Projections

Corollary

An affine condition of the form

AQ ∩
l⋂

j=1

(tj
Q)−1(Xij ) ⊆

m⋃
k=1

BQ
k ∪

l+r⋃
j=l+1

(tj
Q)−1(Xij )

is solvable iff one of its projections is solvable.
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Decision procedure
Example

Remember the affine conditions:

f (Q2) ⊆ X
g−1(X ) ⊆ h−1(X ) ∪ k−1(X )

X ⊆
[
(1, 1)T

]
∪
[
(1, 0)T

]
Induces four sets of affine conditions that are projections:

f (Q2) ⊆ X
h(g−1(X )) ⊆ X

X ⊆
[
(1, 1)T

]
f (Q2) ⊆ X

h(g−1(X )) ⊆ X

X ⊆
[
(1, 0)T

]
f (Q2) ⊆ X

k(g−1(X )) ⊆ X

X ⊆
[
(1, 1)T

]
f (Q2) ⊆ X

k(g−1(X )) ⊆ X

X ⊆
[
(1, 0)T

]
24 / 37



Decision procedure
Fixed-point iteration

Define
X (0)
i := ∅

X (j+1)
i := aff (X (j)

i ∪ Y(j)
i )

where Y(j)
i is the union of left-hand sides of lower bound conditions

of Xi where Xi is substituted by X (j)
i .

Theorem
The affine solution problem is decidable.

Proof.
▶ Fixed point iteration is monotone.

▶ Affine spaces satisfy ascending chain condition.

▶ Iteration terminates with smallest solution of lower bound
conditions.

▶ Suffices to check if upper bound conditions are satisfied.
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Decision procedure
Example

Remember the third set of projections:

f (Q2) ⊆ X
k(g−1(X )) ⊆ X

X ⊆
[
(1, 1)T

]
Doing the fixed point iteration yields

X (0) = ∅

X (1) = aff (f (Q2)) =
{
(1, 0)T

}
X (2) = aff (X (1) ∪ k(g−1(X (1)))) =

[
(1, 0)T

]
X (3) = ... =

[
(1, 0)T

]
Fixed point reached, but does not satisfy upper bound.
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Decision procedure
Example

Now instead consider the fourth set of projections:

f (Q2) ⊆ X
k(g−1(X )) ⊆ X

X ⊆
[
(1, 0)T

]
Same lower bound conditions as before thus fixed point iteration
yields the same result

[
(1, 0)T

]
which this time satisfies the upper

bound.
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Convex solution problem

We work in the language Lconv :

▶ zero 0/0,

▶ one 1/0,

▶ addition +/2,

▶ equality = /2,

▶ scalar multiplication (c/1 for every c ∈ Q) and

▶ inequality ≤ /2.

modulo the theory of the rational numbers Q.

▶ Can assume w.l.o.g. that every first-order atomic formula is of
the form

∑n
i=1 cixi ≤ d

▶ Conjunctions of atomic formulas describe systems of linear
inequalities and thus (possibly unbounded) convex polytopes.
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Convex solution problem
Geometric formulation

Definition (Convex solution problem)

Input: p ∈ N and for each 1 ≤ i ≤ m convex polytopes
Ai ,Bi

1, . . . ,Bi
si
⊆ Qn, affine transformations T i

1, . . . ,T
i
li
, . . .T i

li+ri
and indices for the unknowns j1, . . . , jli , . . . , jli+ri ∈ {1, . . . , p}.
Output: For all 1 ≤ i ≤ m are there convex polytopes
X1, . . . ,Xp ⊆ Qn such that for all 1 ≤ i ≤ m there holds

Ai ∩
li⋂

k=1

(T i
k)

−1(Xjk ) ⊆
si⋃

k=1

Bi
k ∪

li+ri⋃
k=li+1

(T i
k)

−1(Xjk )?

Decidability is still open! Previous proof fails because:

▶ Covering property fails for convex polytopes

▶ Iteration procedure might not terminate (no ACC)
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Convex solution problem
In the rational plane

Definition (Convex solution problem in the rational plane)

Input: A rotation T : Q2 → Q2, and points p, q ∈ Q2

Output: Is there a convex polytope X such that p ∈ X , q ̸∈ X and
T (X ) ⊆ X ?

Theorem (Zivota ’21)

The convex solution problem in the rational plane is decidable.2

2Ziv21.
31 / 37



Convex solution problem
Intervals

Definition (Box)

A box B ⊆ Zn is a product of (possibly unbounded) intervals in Z.

Definition (Interval solution problem)

Input: p ∈ N and for each 1 ≤ i ≤ m boxes Ai ,Bi
1, . . . ,Bi

si
⊆ Zn,

affine transformations T i
1, . . . ,T

i
li
, . . .T i

li+ri
and indices for the

unknowns j1, . . . , jli , . . . , jli+ri ∈ {1, . . . , p}.
Output: For all 1 ≤ i ≤ m are there boxes X1, . . . ,Xp ⊆ Zn such
that for all 1 ≤ i ≤ m there holds

Ai ∩
li⋂

k=1

(T i
k)

−1(Xjk ) ⊆
si⋃

k=1

Bi
k ∪

li+ri⋃
k=li+1

(T i
k)

−1(Xjk )?

Theorem (Zivota ’21)

The interval solution problem is decidable.3
3Ziv21. 32 / 37



Generalized convex solution problem

We work in the language Lconv :

▶ zero 0/0,

▶ one 1/0,

▶ addition +/2,

▶ equality = /2,

▶ multiplication ·/2 and

▶ inequality ≤ /2.

modulo the theory of the rational numbers Q.

▶ Can assume w.l.o.g. that every first-order atomic formula is of
the form p(x1, . . . , xn) ≤ 0 for a polynomial p ∈ Q[x1, . . . , xn]

▶ Conjunctions of atomic formulas describe systems of
polynomial inequalities.
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Generalized convex solution problem

Definition
We call a set A ⊆ Qn polynomially constrained if it is a finite
intersection of sets of the form {x ∈ Qn | p(x) ≤ 0} for a
polynomial p ∈ Q[x ].

Definition (Generalized convex solution problem)

Input: p ∈ N and for each 1 ≤ i ≤ m polynomially constrained
Ai ,Bi

1, . . . ,Bi
si
⊆ Qn, affine transformations T i

1, . . . ,T
i
li
, . . .T i

li+ri
and indices for the unknowns j1, . . . , jli , . . . , jli+ri ∈ {1, . . . , p}.
Output: For all 1 ≤ i ≤ m are there convex polytopes
X1, . . . ,Xp ⊆ Qn such that for all 1 ≤ i ≤ m there holds

Ai ∩
li⋂

k=1

(T i
k)

−1(Xjk ) ⊆
si⋃

k=1

Bi
k ∪

li+ri⋃
k=li+1

(T i
k)

−1(Xjk )?
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Generalized convex solution problem

Theorem (Monniaux ’19)

The generalized convex solution problem is undecidable.4

In fact it suffices to only allow the polynomials in the input to be
quadratic!

4Mon19.
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Conclusion

▶ Formula equations serve as a common framework for many
problems in computational logic
▶ SAT problem, inductive theorem proving, software verification,

...

▶ Potential to integrate techniques from disparate research
communities

▶ Solution problems suggest lots of avenues for further research
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