Formula equations and the affine solution problem

Fabian Achammer

TU Wien

Geometry Seminar June 13, 2024

Motivation

- Generalizes many problems in computational logic such as software verification and inductive theorem proving.
- Serves as a common logical language for these disparate research activities.
- ► Studied since end of 19th/beginning of 20th century
- No thorough investigation yet

Outline

Short introduction to mathematical logic

Formula equations

Affine solution problem

Convex solution problem

Second-order logic

Syntax

- Language: Set of function/relation symbols with assigned arities, e.g.
 - groups: $\{\cdot/2, e/0, ^{-1}/1, = /2\}$
 - ▶ arithmetic: $\{+/2, \cdot/2, 0/0, 1/0, = /2, \le /2\}$
 - graphs: $\{E/2, = /2\}$
- ► *Terms*: Built inductively from variables u, v, w, ... and function symbols, e.g.
 - $\blacktriangleright u \cdot (v \cdot e)$
 - $(1+1)+(0\cdot u)$

Second-order logic

Syntax

- Formulas: Built inductively from
 - ▶ ⊤, ⊥ ("true", "false")
 - $ightharpoonup R(t_1, \ldots, t_n)$ for relation symbol R of arity n and terms t_1, \ldots, t_n
 - $X(t_1,\ldots,t_n)$ for relation variable X of arity n and terms t_1,\ldots,t_n
 - ▶ propositional connectives: negation (\neg) , conjunction (\land) , disjunction (\lor) , implication (\rightarrow) , equivalence (\leftrightarrow) .
 - ightharpoonup quantification over individuals: for all $(\forall u)$ and exists $(\exists u)$
 - ightharpoonup quantification over relations: for all $(\forall X)$, exists $(\exists X)$
 - e.g.
 - > ¬⊥ ∨ T
 - $ightharpoonup A(x) \wedge \neg A(x)$
 - $\exists X \, \forall u \, \forall v \, (X(u,v) \to X(v,u))$
- A formula is called first-order if it does not contain quantification over relations.

Second-order logic

Semantics

- ▶ *L-Structure* \mathcal{M} : A non-empty set M together with
 - **▶** assignment of function symbols f/n of L to functions $f^{\mathcal{M}}: M^n \to M$.
 - ▶ assignment of relation symbols R/n of L to relations $R^{\mathcal{M}} \subseteq M^n$.
 - ▶ e.g. $\mathbb N$ together with the assignment of +, \cdot , 0, 1, =, \leq to the actual addition, multiplication, zero, one, equality and less-than-or-equal on natural numbers
- We write $\mathcal{M} \models \varphi$ (" \mathcal{M} satisfies/models φ ") if formula φ holds in \mathcal{M} , e.g.
 - ightharpoonup
 vert
 vert
 - $ightharpoonup \mathbb{C} \models \forall u \, \forall v \, u \cdot v = v \cdot u, \text{ but } \mathbb{H} \not\models \forall u \, \forall v \, u \cdot v = v \cdot u$
- We write $\models \varphi$ (" φ is valid") if φ holds in all *L*-structures, e.g.
 - $\blacktriangleright \models (A \land B) \rightarrow A$
 - $\blacktriangleright \models \forall X (\exists u \, \forall v \, X(u,v) \rightarrow \forall v \, \exists u \, X(u,v))$

Decidability

- ▶ Decision problem: Let an input set S be fixed. Given $D \subseteq S$, is there an algorithm which given an input $x \in S$ answers "yes" if $x \in D$ and answers "no" if $x \notin D$?
- If such an algorithm exists, we call *D* decidable.
- Examples of decidable sets:
 - the set of prime numbers inside the natural numbers,
 - the set of connected graphs inside the class of finite graphs.
- Examples of undecidable sets:
 - ► The set of programs p and inputs i such that p terminates on input i (halting set),
 - the set of first-order formulas φ such that $\mathbb{N} \models \varphi$.

Outline

Short introduction to mathematical logic

Formula equations

Affine solution problem

Convex solution problem

Formula equations

Motivation

▶ Equation: Given terms t(x), s(x), find an a such that

$$t(a)=s(a).$$

• On formulas: Given formulas $\varphi(X)$, $\psi(X)$, find a formula χ such that

$$\varphi(\chi) = \psi(\chi)$$

$$\models \varphi(\chi) \leftrightarrow \psi(\chi)$$

- $\varphi(\chi)$ describes the formula where every occurrence of $X(t_1,\ldots,t_n)$ in φ is substituted by $\chi(t_1,\ldots,t_n)$ (given compatible arities)
- ▶ Simplification: Given $\varphi(X)$, find a formula χ such that

$$\models \varphi(\chi)$$

Formula equations

Definition

Definition

A formula equation is a formula of the form $\exists X_1 \dots X_n \, \varphi(X_1, \dots, X_n)$ where $\varphi(X_1 \dots X_n)$ is a first-order formula. A solution of $\exists X_1 \dots X_n \, \varphi(X_1, \dots, X_n)$ modulo a structure $\mathcal M$ is a tuple of first-order formulas χ_1, \dots, χ_n such that $\mathcal M \models \varphi(\chi_1, \dots, \chi_n)$.

- ▶ We often abbreviate tuples $(a_1, ..., a_n)$ by \overline{a}
 - ▶ formula equation $\exists \overline{X} \varphi(\overline{X})$
 - ightharpoonup solution tuple $\overline{\chi}$

Formula equations

Examples

- $ightharpoonup \exists X X(0)$
 - ▶ some solutions are $\chi(u) := u = 0$ and $\chi(u) := \top$ (modulo any structure \mathcal{M})
- $ightharpoonup \exists X (X(0) \land \neg X(0))$
 - has no solutions
- $\Rightarrow \exists X (X(0) \land \forall u (X(u) \rightarrow X(u+2)) \land \forall u (X(u) \rightarrow \neg X(u+1)))$
 - ▶ a solution modulo \mathbb{N} is $\chi(u) := \exists v \ u = v + v$

Remark

There are valid, but unsolvable formula equations, i.e. there exist $\varphi(X)$ such that $\mathbb{N} \models \exists X \varphi(X)$, but $\exists X \varphi(X)$ has no solutions modulo \mathbb{N} .

Solution problems

Is there an algorithm, such that given any instance of a formula equation, determines whether it has a solution modulo a structure M?

Instances of solution problems capture the following problems:

- Satisfiability of propositional formulas (NP-complete)
- Validity of first-order formulas (undecidable)
- Software verification (undecidable)
- Affine solution problem (decidable)
- Convex solution problem (open)

Other avenues for research:

- Use techniques from one area and apply it to solve problems in another area
- Find sets of formulas which are closed under solutions to formula equations
- **>** ...

Outline

Short introduction to mathematical logic

Formula equations

Affine solution problem

Convex solution problem

Affine formula equations

We work in the language L_{aff} :

- ▶ zero 0/0,
- ▶ one 1/0,
- ightharpoonup addition +/2,
- ightharpoonup equality = /2 and
- ▶ scalar multiplication $(c/1 \text{ for every } c \in \mathbb{Q}).$

modulo the theory of the rational numbers $\mathbb{Q}.$

- Can assume w.l.o.g. that every term $t(x_1, ..., x_n)$ is of the form $c_0 + \sum_{i=1}^n c_i x_i$ and every first-order atomic formula is of the form $t(x_1, ..., x_n) = 0$ for some term t
- ▶ Every term $t(x_1, ..., x_n)$ induces an affine function $t^{\mathbb{Q}} : \mathbb{Q}^n \to \mathbb{Q}$
- ▶ Every first-order atomic formula $A(x_1,...,x_n)$ induces an affine subspace $A^{\mathbb{Q}} \subseteq \mathbb{Q}^n$ or the empty set
- Conjunctions of atomic formulas describe systems of linear equations and thus affine spaces.

Affine formula equations

Definition (Affine solution problem)

Input: A quantifier-free L_{aff} -formula $\varphi(\overline{X}, \overline{u})$ Output: Is there a solution $\overline{\chi}$ of $\exists \overline{X} \, \forall \overline{u} \, \varphi(\overline{X}, \overline{u})$ modulo \mathbb{Q} such that all χ_i are conjunctions of atoms?

Theorem (Hetzl, Zivota '19)

The affine solution problem is decidable.¹

¹HZ19.

Clausification

Every quantifier-free formula can transformed into an equivalent formula φ' in *conjunctive normal form*:

$$C_1 \wedge \cdots \wedge C_k$$

where each C_i is a *clause*, i.e. of the form

$$A(\overline{u}) \wedge X_{i_1}(\overline{t_1}(\overline{u})) \wedge \cdots \wedge X_{i_l}(\overline{t_l}(\overline{u}))$$

$$\to B_1(\overline{u}) \vee \cdots \vee B_m(\overline{u}) \vee X_{i_{l+1}}(\overline{t_{l+1}}(\overline{u})) \vee \ldots X_{i_{l+r}}(\overline{t_{l+r}}(\overline{u}))$$

Example

Consider the affine formula equation

$$\exists X \, \forall u \, \forall v \, \left(\bigwedge(X(-u,v) \to X(-v,u) \vee X(u,-v)) \right) \\ \wedge (X(u,v) \to u = v \vee v = 0)$$

which is already in clause form. Its clauses are

Translation to affine conditions

Over $\mathbb Q$ the clause

$$\begin{split} A(\overline{u}) \wedge X_{i_1}(\overline{t_1}(\overline{u})) \wedge \cdots \wedge X_{i_l}(\overline{t_l}(\overline{u})) \\ \rightarrow B_1(\overline{u}) \vee \cdots \vee B_m(\overline{u}) \vee X_{i_{l+1}}(\overline{t_{l+1}}(\overline{u})) \vee \ldots X_{i_{l+r}}(\overline{t_{l+r}}(\overline{u})) \end{split}$$

translates into the condition

$$A^{\mathbb{Q}}\cap\bigcap_{j=1}^{l}(\overline{t_{j}}^{\mathbb{Q}})^{-1}(\mathcal{X}_{i_{j}})\subseteq\bigcup_{k=1}^{m}B_{k}^{\mathbb{Q}}\cup\bigcup_{k=l+1}^{l+r}(\overline{t_{k}}^{\mathbb{Q}})^{-1}(\mathcal{X}_{i_{k}})$$

where the \mathcal{X}_i are unknown affine subspaces.

Affine solution problem

Geometric formulation

Input: $p \in \mathbb{N}$ and for each $1 \leq i \leq m$ affine spaces $\mathcal{A}^i, \mathcal{B}^i_1, \ldots, \mathcal{B}^i_{s_i} \subseteq \mathbb{Q}^n$, affine transformations $T^i_1, \ldots, T^i_{l_i}, \ldots, T^i_{l_i+r_i}$ and indices for the unknowns $j_1, \ldots, j_{l_i}, \ldots, j_{l_i+r_i} \in \{1, \ldots, p\}$. Output: For all $1 \leq i \leq m$ are there affine spaces $\mathcal{X}_1, \ldots, \mathcal{X}_p \subseteq \mathbb{Q}^n$ such that for all $1 \leq i \leq m$ there holds

$$\mathcal{A}^i\cap igcap_{k=1}^{l_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})\subseteq igcup_{k=1}^{s_i}\mathcal{B}^i_k\cup igcup_{k=l_i+1}^{l_i+r_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})?$$

Example

Remember the clauses

Let $f(u, v) := (1, 0)^T$, $g(u, v) := (-u, v)^T$, $h(u, v) := (-v, u)^T$, $k(u, v) := (u, -v)^T$. The clauses translate into conditions on the affine space \mathcal{X} :

$$\mathbb{Q}^{2} \subseteq f^{-1}(\mathcal{X})$$
$$g^{-1}(\mathcal{X}) \subseteq h^{-1}(\mathcal{X}) \cup k^{-1}(\mathcal{X})$$
$$\mathcal{X} \subseteq \left[(1,1)^{T} \right] \cup \left[(1,0)^{T} \right]$$

Covering property

Lemma

Let V be a vector space over \mathbb{Q} and let $A, \mathcal{B}_1, \ldots, \mathcal{B}_m$ be affine subspaces of V. If $A \subseteq \bigcup_{i=1}^m \mathcal{B}_i$, then $A \subseteq \mathcal{B}_i$ for some $i \in \{1, \ldots, m\}$.

Projections

Definition

A projection of an affine condition of the form

$$A^{\mathbb{Q}}\cap\bigcap_{j=1}^{l}(\overline{t_{j}}^{\mathbb{Q}})^{-1}(\mathcal{X}_{i_{j}})\subseteq\bigcup_{k=1}^{m}B_{k}^{\mathbb{Q}}\cup\bigcup_{j=l+1}^{l+r}(\overline{t_{j}}^{\mathbb{Q}})^{-1}(\mathcal{X}_{i_{j}})$$

is a condition of the form

$$A^{\mathbb{Q}} \cap \bigcap_{i=l+1}^{l+r} (\overline{t_i}^{\mathbb{Q}})^{-1}(\mathcal{X}_{i_j}) \subseteq B_k^{\mathbb{Q}}$$
 (upper bound condition)

or

$$A^{\mathbb{Q}} \cap \bigcap_{i=l+1}^{l+r} (\overline{t_{j}}^{\mathbb{Q}})^{-1} (\mathcal{X}_{i_{j}}) \subseteq (\overline{t_{k}}^{\mathbb{Q}})^{-1} (\mathcal{X}_{i_{k}}) \overline{t_{k}}^{\mathbb{Q}} (A^{\mathbb{Q}} \cap \bigcap_{i=1}^{l} (\overline{t_{j}}^{\mathbb{Q}})^{-1} (\mathcal{X}_{i_{j}})) \subseteq \mathcal{X}_{i_{k}} \quad (\mathsf{I}_{i_{k}}) \cap (\mathsf{I}_{$$

Projections

Corollary

An affine condition of the form

$$A^{\mathbb{Q}} \cap \bigcap_{j=1}^{l} (\overline{t_{j}}^{\mathbb{Q}})^{-1} (\mathcal{X}_{i_{j}}) \subseteq \bigcup_{k=1}^{m} B_{k}^{\mathbb{Q}} \cup \bigcup_{j=l+1}^{l+r} (\overline{t_{j}}^{\mathbb{Q}})^{-1} (\mathcal{X}_{i_{j}})$$

is solvable iff one of its projections is solvable.

Example

Remember the affine conditions:

$$f(\mathbb{Q}^2) \subseteq \mathcal{X}$$

$$g^{-1}(\mathcal{X}) \subseteq h^{-1}(\mathcal{X}) \cup k^{-1}(\mathcal{X})$$

$$\mathcal{X} \subseteq \left[(1,1)^T \right] \cup \left[(1,0)^T \right]$$

Induces four sets of affine conditions that are projections:

$$f(\mathbb{Q}^{2}) \subseteq \mathcal{X} \qquad \qquad f(\mathbb{Q}^{2}) \subseteq \mathcal{X}$$

$$h(g^{-1}(\mathcal{X})) \subseteq \mathcal{X} \qquad \qquad h(g^{-1}(\mathcal{X})) \subseteq \mathcal{X}$$

$$\mathcal{X} \subseteq \left[(1,1)^{T} \right] \qquad \qquad \mathcal{X} \subseteq \left[(1,0)^{T} \right]$$

$$f(\mathbb{Q}^{2}) \subseteq \mathcal{X} \qquad \qquad f(\mathbb{Q}^{2}) \subseteq \mathcal{X}$$

$$k(g^{-1}(\mathcal{X})) \subseteq \mathcal{X} \qquad \qquad k(g^{-1}(\mathcal{X})) \subseteq \mathcal{X}$$

$$\mathcal{X} \subseteq \left[(1,1)^{T} \right] \qquad \qquad \mathcal{X} \subseteq \left[(1,0)^{T} \right]$$

Fixed-point iteration

Define

$$egin{aligned} \mathcal{X}_i^{(0)} &:= \emptyset \ \mathcal{X}_i^{(j+1)} &:= \mathit{aff}(\mathcal{X}_i^{(j)} \cup \mathcal{Y}_i^{(j)}) \end{aligned}$$

where $\mathcal{Y}_i^{(j)}$ is the union of left-hand sides of lower bound conditions of \mathcal{X}_i where \mathcal{X}_i is substituted by $\mathcal{X}_i^{(j)}$.

Theorem

The affine solution problem is decidable.

Proof.

- Fixed point iteration is monotone.
- Affine spaces satisfy ascending chain condition.
- Iteration terminates with smallest solution of lower bound conditions.
- Suffices to check if upper bound conditions are satisfied.

Example

Remember the third set of projections:

$$f(\mathbb{Q}^2) \subseteq \mathcal{X}$$
 $k(g^{-1}(\mathcal{X})) \subseteq \mathcal{X}$
 $\mathcal{X} \subseteq \left[(1,1)^T \right]$

Doing the fixed point iteration yields

$$\mathcal{X}^{(0)} = \emptyset$$

$$\mathcal{X}^{(1)} = aff(f(\mathbb{Q}^2)) = \left\{ (1,0)^T \right\}$$

$$\mathcal{X}^{(2)} = aff(\mathcal{X}^{(1)} \cup k(g^{-1}(\mathcal{X}^{(1)}))) = \left[(1,0)^T \right]$$

$$\mathcal{X}^{(3)} = \dots = \left[(1,0)^T \right]$$

Fixed point reached, but does not satisfy upper bound.

Example

Now instead consider the fourth set of projections:

$$f(\mathbb{Q}^2) \subseteq \mathcal{X}$$
 $k(g^{-1}(\mathcal{X})) \subseteq \mathcal{X}$
 $\mathcal{X} \subseteq \left[(1,0)^T \right]$

Same lower bound conditions as before thus fixed point iteration yields the same result $[(1,0)^T]$ which this time satisfies the upper bound.

Outline

Short introduction to mathematical logic

Formula equations

Affine solution problem

Convex solution problem

We work in the language L_{conv} :

- ▶ zero 0/0,
- ▶ one 1/0,
- ightharpoonup addition +/2,
- ightharpoonup equality = /2,
- lacktriangle scalar multiplication (c/1 for every $c\in\mathbb{Q})$ and
- inequality $\leq /2$.

modulo the theory of the rational numbers \mathbb{Q} .

- ► Can assume w.l.o.g. that every first-order atomic formula is of the form $\sum_{i=1}^{n} c_i x_i \leq d$
- Conjunctions of atomic formulas describe systems of linear inequalities and thus (possibly unbounded) convex polytopes.

Geometric formulation

Definition (Convex solution problem)

Input: $p \in \mathbb{N}$ and for each $1 \leq i \leq m$ convex polytopes $\mathcal{A}^i, \mathcal{B}^i_1, \dots, \mathcal{B}^i_{s_i} \subseteq \mathbb{Q}^n$, affine transformations $T^i_1, \dots, T^i_{l_i}, \dots T^i_{l_i+r_i}$ and indices for the unknowns $j_1, \dots, j_{l_i}, \dots, j_{l_i+r_i} \in \{1, \dots, p\}$. Output: For all $1 \leq i \leq m$ are there **convex polytopes** $\mathcal{X}_1, \dots, \mathcal{X}_p \subseteq \mathbb{Q}^n$ such that for all $1 \leq i \leq m$ there holds

$$\mathcal{A}^i\cap igcap_{k=1}^{l_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})\subseteq igcup_{k=1}^{s_i}\mathcal{B}^i_k\cup igcup_{k=l_i+1}^{l_i+r_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})?$$

Decidability is still open! Previous proof fails because:

- Covering property fails for convex polytopes
- ► Iteration procedure might not terminate (no ACC)

In the rational plane

Definition (Convex solution problem in the rational plane)

Input: A rotation $T:\mathbb{Q}^2\to\mathbb{Q}^2$, and points $p,q\in\mathbb{Q}^2$ Output: Is there a convex polytope $\mathcal X$ such that $p\in\mathcal X,q\not\in\mathcal X$ and $T(\mathcal X)\subseteq\mathcal X$?

Theorem (Zivota '21)

The convex solution problem in the rational plane is decidable.²

²Ziv21.

Intervals

Definition (Box)

A box $B \subseteq \mathbb{Z}^n$ is a product of (possibly unbounded) intervals in \mathbb{Z} .

Definition (Interval solution problem)

Input: $p \in \mathbb{N}$ and for each $1 \leq i \leq m$ boxes $\mathcal{A}^i, \mathcal{B}^i_1, \dots, \mathcal{B}^i_{s_i} \subseteq \mathbb{Z}^n$, affine transformations $T^i_1, \dots, T^i_{l_i}, \dots T^i_{l_i+r_i}$ and indices for the unknowns $j_1, \dots, j_{l_i}, \dots, j_{l_i+r_i} \in \{1, \dots, p\}$.

Output: For all $1 \le i \le m$ are there **boxes** $\mathcal{X}_1, \dots, \mathcal{X}_p \subseteq \mathbb{Z}^n$ such that for all $1 \le i \le m$ there holds

$$\mathcal{A}^i\cap igcap_{k=1}^{l_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})\subseteq igcup_{k=1}^{s_i}\mathcal{B}^i_k\cup igcup_{k=l_i+1}^{l_i+r_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})?$$

Theorem (Zivota '21)

<u>The interval solution problem is decidable.</u>³ Ziv21.

Generalized convex solution problem

We work in the language L_{conv} :

- ▶ zero 0/0,
- ▶ one 1/0,
- ightharpoonup addition +/2,
- ightharpoonup equality = /2,
- **► multiplication** ·/2 and
- ▶ inequality $\leq /2$.

modulo the theory of the rational numbers \mathbb{Q} .

- ▶ Can assume w.l.o.g. that every first-order atomic formula is of the form $p(x_1,...,x_n) \le 0$ for a polynomial $p \in \mathbb{Q}[x_1,...,x_n]$
- Conjunctions of atomic formulas describe systems of polynomial inequalities.

Generalized convex solution problem

Definition

We call a set $\mathcal{A} \subseteq \mathbb{Q}^n$ polynomially constrained if it is a finite intersection of sets of the form $\{\overline{x} \in \mathbb{Q}^n \mid p(\overline{x}) \leq 0\}$ for a polynomial $p \in \mathbb{Q}[\overline{x}]$.

Definition (Generalized convex solution problem)

Input: $p \in \mathbb{N}$ and for each $1 \leq i \leq m$ polynomially constrained $\mathcal{A}^i, \mathcal{B}^i_1, \ldots, \mathcal{B}^i_{s_i} \subseteq \mathbb{Q}^n$, affine transformations $T^i_1, \ldots, T^i_{l_i}, \ldots, T^i_{l_i+r_i}$ and indices for the unknowns $j_1, \ldots, j_{l_i}, \ldots, j_{l_i+r_i} \in \{1, \ldots, p\}$. Output: For all $1 \leq i \leq m$ are there **convex polytopes** $\mathcal{X}_1, \ldots, \mathcal{X}_p \subseteq \mathbb{Q}^n$ such that for all $1 \leq i \leq m$ there holds

$$\mathcal{A}^i\cap igcap_{k=1}^{l_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})\subseteq igcup_{k=1}^{s_i}\mathcal{B}^i_k\cup igcup_{k=l_i+1}^{l_i+r_i}(\mathcal{T}^i_k)^{-1}(\mathcal{X}_{j_k})?$$

Generalized convex solution problem

Theorem (Monniaux '19)

The generalized convex solution problem is undecidable.⁴ In fact it suffices to only allow the polynomials in the input to be quadratic!

⁴Mon19.

Conclusion

- Formula equations serve as a common framework for many problems in computational logic
 - ► SAT problem, inductive theorem proving, software verification, ...
- Potential to integrate techniques from disparate research communities
- ► Solution problems suggest lots of avenues for further research

References I

- [HZ19] Stefan Hetzl and Sebastian Zivota. "Decidability of affine solution problems". In: Journal of Logic and Computation 30.3 (Jan. 2019), pp. 697–714. ISSN: 0955-792X. DOI: 10.1093/logcom/exz033. eprint: https://academic.oup.com/logcom/article-pdf/30/3/697/33154057/exz033.pdf. URL: https://doi.org/10.1093/logcom/exz033.
- [Mon19] David Monniaux. "On the decidability of the existence of polyhedral invariants in transition systems". In: Acta Informatica 56.4 (June 2019), pp. 385–389. DOI: 10.1007/s00236-018-0324-y. URL: https://hal.science/hal-01587125.
- [Ziv21] Sebastian Zivota. "On formula equations and invariant generation". PhD thesis. Technische Universität Wien, 2021.